skip to main content


Search for: All records

Award ID contains: 1939368

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jihe Wang, Yi He (Ed.)
    Graph neural networks (GNN) are a powerful tool for combining imaging and non-imaging medical information for node classification tasks. Cross-network node classification extends GNN techniques to account for domain drift, allowing for node classification on an unlabeled target network. In this paper we present OTGCN, a powerful, novel approach to cross-network node classification. This approach leans on concepts from graph convolutional networks to harness insights from graph data structures while simultaneously applying strategies rooted in optimal transport to correct for the domain drift that can occur between samples from different data collection sites. This blended approach provides a practical solution for scenarios with many distinct forms of data collected across different locations and equipment. We demonstrate the effectiveness of this approach at classifying Autism Spectrum Disorder subjects using a blend of imaging and non-imaging data. 
    more » « less
    Free, publicly-accessible full text available December 4, 2024
  2. Jihe Wang, Yi He (Ed.)
    Influence propagation is a network phenomenon governing how information is diffused in a network. With the advent of deep learning, there has been growing interest in applying graph neural networks to extract salient feature representation of the nodes for a variety of network mining tasks, such as forecasting the virality of information cascade. Given the importance of social influence, this paper presents a novel deep learning framework called IP-GNN for simulating the information propagation process in a complex network and learning a node representation that embeds information about the diffusion process under the linear threshold model. Our framework employs a modified graph convolutional network architecture with adaptive diffusion kernel to capture long-range propagation of information along with an entropy-regularized mixture of loss functions to ensure accurate prediction and faster convergence of the learning algorithm. Experimental results on 4 real-world datasets show that the model accurately mimics the output of the linear threshold model, achieving an average accuracy that exceeds 90\% on all datasets. 
    more » « less
    Free, publicly-accessible full text available December 4, 2024
  3. Network sampling is the task of selecting a subset of nodes and links from a network in a way that preserves its topological properties and other user requirements. This paper investigates the problem of generating an unbiased network sample that contains balanced proportion of nodes from different groups. Creating such a representative sample would require handling the trade-off between ensuring structural preservability and group representativity of the selected nodes. We present a novel max-min subgraph fairness measure that can be used as a unifying framework to combine both criteria. A greedy algorithm is then proposed to generate a fair and representative sample from an initial set of target nodes. A theoretical approximation guarantee for the output of the proposed greedy algorithm based on submodularity and curvature ratios is also presented. Experimental results on real-world datasets show that the proposed method will generate more fair and representative samples compared to other existing network sampling methods. 
    more » « less
  4. Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph data due to their ability to learn a concise representation of the data by integrating the node attributes and link information in a principled fashion. However, despite their promise, there are several practical challenges that must be overcome to effectively use them for node classification problems. In particular, current approaches are vulnerable to different kinds of biases inherent in the graph data. First, if the class distribution is imbalanced, then the GNNs' loss function is biased towards classifying the majority class correctly rather than the minority class, which hurts the performance of the latter class. Second, due to homophily effect, the learned representation and subsequent downstream tasks may favor certain demographic groups over others when applied to social network data. To mitigate such biases, we propose a novel framework called Fairness-Aware Cost Sensitive Graph Convolutional Network (FACS-GCN) for classifying nodes in networks with skewed class distributions. Our approach combines a cost-sensitive exponential loss with an adversarial learning component to alleviate the ill-effects of both biases. The framework employs a stagewise additive modeling approach to ensure there is no significant loss in accuracy when imparting fairness into the GNN. Experimental results on 6 benchmark graph data demonstrate the effectiveness of FACS-GCN against comparable baseline methods in terms of promoting fairness while maintaining a high model accuracy on the majority of the datasets. 
    more » « less
  5. null (Ed.)
    Algorithmic fairness is a major concern in recent years as the influence of machine learning algorithms becomes more widespread. In this paper, we investigate the issue of algorithmic fairness from a network-centric perspective. Specifically, we introduce a novel yet intuitive function known as fairness perception and provide an axiomatic approach to analyze its properties. Using a peer-review network as a case study, we also examine its utility in terms of assessing the perception of fairness in paper acceptance decisions. We show how the function can be extended to a group fairness metric known as fairness visibility and demonstrate its relationship to demographic parity. We also discuss a potential pitfall of the fairness visibility measure that can be exploited to mislead individuals into perceiving that the algorithmic decisions are fair. We demonstrate how the problem can be alleviated by increasing the local neighborhood size of the fairness perception function. 
    more » « less
  6. null (Ed.)
    Link prediction is an important task in online social networking as it can be used to infer new or previously unknown relationships of a network. However, due to the homophily principle, current algorithms are susceptible to promoting links that may lead to increase segregation of the network—an effect known as filter bubble. In this study, we examine the filter bubble problem from the perspective of algorithm fairness and introduce a dyadic-level fairness criterion based on network modularity measure. We show how the criterion can be utilized as a postprocessing step to generate more heterogeneous links in order to overcome the filter bubble problem. In addition, we also present a novel framework that combines adversarial network representation learning with supervised link prediction to alleviate the filter bubble problem. Experimental results conducted on several real-world datasets showed the effectiveness of the proposed methods compared to other baseline approaches, which include conventional link prediction and fairness-aware methods for i.i.d data. 
    more » « less