skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1940287

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interstitial dumbbell-mediated diffusion can affect segregation and precipitation properties of solutes in alloys under irradiated conditions. Accurate computation of transport coefficients for dumbbell-mediated diffusion thus becomes essential for modelling solute segregation under irradiation. In this work, we extend the Green’s function approach, a general numerical approach, to compute accurate transport coefficients for interstitial dumbbell-mediated mechanisms in the dilute limit for arbitrary crystalline systems with non-truncated correlations in atomic diffusion. We also present results of tracer correlation factors, solute drag ratios and partial diffusion coefficient ratios in iron and nickel-based alloys computed with our approach, compare our results with existing results in the literature, and discuss some aspects of correlated solute-dumbbell motion. 
    more » « less
  2. We present an overview of four challenging research areas in multiscale physics and engineering as well as four data science topics that may be developed for addressing these challenges. We focus on multiscale spatiotemporal problems in light of the importance of understanding the accompanying scientific processes and engineering ideas, where “multiscale” refers to concurrent, non-trivial and coupled models over scales separated by orders of magnitude in either space, time, energy, momenta, or any other relevant parameter. Specifically, we consider problems where the data may be obtained at various resolutions; analyzing such data and constructing coupled models led to open research questions in various applications of data science. Numeric studies are reported for one of the data science techniques discussed here for illustration, namely, on approximate Bayesian computations. 
    more » « less