skip to main content


Search for: All records

Award ID contains: 1940305

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Colorado Plateau, USA, is bordered by Pleistocene continental rift volcanism in New Mexico, Arizona, and Utah. While most of the eruptions have been basaltic, rhyolitic domes, tuffs, and lavas have been produced. On the western margin, where the Colorado Plateau meets the Basin and Range extensional province, the Black Rock Desert of central Utah hosts Pleistocene-Holocene bimodal basalt-rhyolite volcanic activity. The South Twin Complex consists of six rhyolites within a single basin erupted between 2.45 and 2.40 Ma, and they precede all Pleistocene basalts of the region. In this work, we share a new rhyolite eruptive stratigraphy based on high precision 40Ar/39Ar dates and examine the zircon crystal cargo from each eruptive center. The new eruption ages allow us to examine the spatial and temporal distribution of volcanism in the South Twin Complex, whereas the zircon crystal morphology, geochemistry, and U/Pb dating allow us to assess the conditions and timescales of silicic magma processes in the subvolcanic plumbing system. Our data suggest the plumbing system beneath the region experienced punctuated influxes of magma over a brief period of thousands to tens of thousands of years. Further, the timescales and patterns of silicic magma assembly and evolution of this small anorogenic region are similar to those observed within the voluminous Yellowstone province, suggesting that the volume of magmatic flux does not control magmatic evolution in intercontinental settings. 
    more » « less
  2. The origins and evolution of small-volume, high-silica intercontinental rhyolites have been attributed to numerous processes such as derivation from granitic partial melts or small melt fractions remaining from fractional crystallization. Investigations into the thermo-chemical-temporal evolution of these rhyolites has provided insights into the storage and differentiation mechanisms of small volume magmas. In the Mineral Mountains, Utah, high-silica rhyolites erupted through Miocene granitoids between ca. 0.8 and 0.5 Ma, and produced numerous domes, obsidian flows, and pyroclastic deposits. Temporally equivalent basalts erupted in the valleys north and east of the Mineral Mountains, hinting at a potential relationship between mafic and felsic volcanic activity. Here we test competing hypotheses. Are the rhyolites products of extreme fractionation of the coeval basalts? Or do they represent anatectic melts of the granitoids through which they erupted? We address these questions through modeling with new whole rock geochemical data and zircon trace element chemistry, thermometry, and U/Pb LA-ICPMS dates. We couple these data with new 40Ar/39Ar eruption ages to improve upon the volcanic stratigraphy and address the recurrence interval for the most evolved rhyolites. Geochemical data from zircon crystals extracted from six domes suggest increasing differentiation with age and eruptive location, however there is minimal evidence for recycling of earlier crystallized zircon. These data suggest that magma batches were isolated from one another and zircon nucleation and crystallization occurred close to the eruption, thus limiting the residence time of the magmas. These data also perhaps suggest that the magmas were generated in small batches within each of the granitoids rather than from a large crystal mush body underlying the region, as seen at large silicic systems. Our preliminary geochemical models and zircon petrochronology eliminate extreme fractionation and favor local anatectic melting of different granitoids as a mechanism to produce chemical signatures observed in the Quaternary rhyolites in the Mineral Mountains. 
    more » « less