skip to main content


Title: Continental rift rhyolites at the confluence of the Basin and Range and Colorado Plateau, USA: timescales of activity from the zircon and feldspar record
The Colorado Plateau, USA, is bordered by Pleistocene continental rift volcanism in New Mexico, Arizona, and Utah. While most of the eruptions have been basaltic, rhyolitic domes, tuffs, and lavas have been produced. On the western margin, where the Colorado Plateau meets the Basin and Range extensional province, the Black Rock Desert of central Utah hosts Pleistocene-Holocene bimodal basalt-rhyolite volcanic activity. The South Twin Complex consists of six rhyolites within a single basin erupted between 2.45 and 2.40 Ma, and they precede all Pleistocene basalts of the region. In this work, we share a new rhyolite eruptive stratigraphy based on high precision 40Ar/39Ar dates and examine the zircon crystal cargo from each eruptive center. The new eruption ages allow us to examine the spatial and temporal distribution of volcanism in the South Twin Complex, whereas the zircon crystal morphology, geochemistry, and U/Pb dating allow us to assess the conditions and timescales of silicic magma processes in the subvolcanic plumbing system. Our data suggest the plumbing system beneath the region experienced punctuated influxes of magma over a brief period of thousands to tens of thousands of years. Further, the timescales and patterns of silicic magma assembly and evolution of this small anorogenic region are similar to those observed within the voluminous Yellowstone province, suggesting that the volume of magmatic flux does not control magmatic evolution in intercontinental settings.  more » « less
Award ID(s):
1940305
NSF-PAR ID:
10401230
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IAVCEI 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ignimbrite flare-ups are rare periods of intense silicic volcanism during which the pyroclastic volume and eruptive frequency is more than an order of magnitude higher than background activity. Investigating the compositional differences between flare-up and steady-state magmas provides critical constraints on the petrogenetic causes for the event and can offer unique opportunities to investigate the role of large-scale tectonic or geodynamic processes in arc magmatism. In this study, we focus on the bimodal Deschutes Formation ignimbrite flare-up of Central Oregon, which erupted unusually high volumes of pyroclastic material 6.25–5.45 Ma from a new axis of volcanism in the Cascades arc. This episode is marked by increased eruption rates and eruption of more silicic compositions relative to the Quaternary Cascade arc, which rarely erupts rhyolites. Ignimbrites are crystal-poor (<10%) dacite to rhyolites (mostly 65–77 wt.% SiO2) with anhydrous mineral assemblages and higher FeO/MgO, Y, Eu/Eu*, MREE and Zr/Sr, indicating drier magmatic evolution compared to the Quaternary arc, and are more similar to those from the rear-arc High Lava Plains (HLP) province that lies to the east. Magnetite-ilmenite oxybarometry indicates that Deschutes Formation felsic magmas tend to be hotter and more reduced (NNO-1 to NNO) than the Quaternary arc (NNO to NNO + 1.5). Rhyolite-MELTS geobarometry suggests complex storage of diverse Deschutes Formation magmas within the shallow crust (50–250 MPa), and the common co-eruption of multiple plagioclase populations, pumice compositions, and compositionally banded pumice suggest variable degrees of mixing and mingling of distinct magmas. Deschutes magmas also have low δ18Oplagioclase values that indicate partial melting and assimilation of hydrothermally altered shallow crust. Trace element systematics and rhyolite-MELTS modeling suggests that felsic pumice cannot be produced by simple fractionation of co-erupted mafic pumice or basaltic lavas, and requires a crustal melting origin, and trace elements and Pb isotopes suggest that young mafic crust may have been the primary protolith. We suggest that partial melting produced low-Si rhyolite melt (~72 wt.%) that acted as both a parent for the most evolved rhyolites, and as a mixing endmember to create the dacite to rhyodacite magmas with heterogenous plagioclase populations. Unlike the predominantly calc-alkaline basalts erupted in the Quaternary Cascade arc, Deschutes Formation primary basalts are mostly low-K tholeiites, indicative of decompression melting. These are similar to the compositions erupted during a contemporaneous pulse of low-K tholeiite volcanism across the whole HLP that reached into the Cascades rear-arc. We suggest that intra-arc extension focused decompression melts from the back-arc into the arc and that tensional stresses allowed this high flux of hot-dry-reduced basalt throughout the crustal column, causing partial melting of mafic protoliths and the production of hot-dry-reduced rhyolite melts. Depletion of incompatible elements in successive rhyolites implies progressive depletion in fertility of the protolith. Extension also allowed for the establishment of a robust hydrothermal system, and assimilation of hydrothermally-altered rocks by magmas residing in a shallow, complex storage network lead to low δ18O melts. Our findings suggest the integral role that extensional tectonics played in producing an unusual ignimbrite flare-up of hot-dry-reduced rhyolite magmas that are atypical of the Cascades arc and may be an important contributor to flare-ups at arcs worldwide. 
    more » « less
  2. Abstract Plutons offer an opportunity to study the extended history of magmas at depth. Fully exploiting this record requires the ability to track changes in magmatic plumbing systems as magma intrudes, crystallizes, and/or mixes through time. This task has been difficult in granitoid plutons because of low sampling density, poorly preserved or cryptic intrusive relationships, and the difficulty of identifying plutonic volumes that record the contemporaneous presence of melt. In particular, the difficulty in delineating fossil magma reservoirs has limited our ability to directly test whether or not high-SiO2 rhyolite is the result of crystal-melt segregation. We present new high-precision U-Pb zircon geochronologic and geochemical data that characterize the Miocene Searchlight pluton in southern Nevada, USA. The data indicate that the pluton was built incrementally over ~1.5 m.y. with some volumes of magma completely crystallizing before subsequent volumes arrived. The largest increment is an ~2.7-km-thick granitic sill that records contemporaneous zircon crystallization, which we interpret to represent a fossil silicic magma reservoir within the greater Searchlight pluton. Whole-rock geochemical data demonstrate that this unit is stratified relative to paleo-vertical, consistent with gravitationally driven separation of high-SiO2 melt from early-formed crystals at moderate crystallinity. Zircon trace-element compositions suggest that our geochronologic data from this unit record most of the relevant crystallization interval for differentiation and that this process occurred in <150 k.y. 
    more » « less
  3. The origins and evolution of small-volume, high-silica intercontinental rhyolites have been attributed to numerous processes such as derivation from granitic partial melts or small melt fractions remaining from fractional crystallization. Investigations into the thermo-chemical-temporal evolution of these rhyolites has provided insights into the storage and differentiation mechanisms of small volume magmas. In the Mineral Mountains, Utah, high-silica rhyolites erupted through Miocene granitoids between ca. 0.8 and 0.5 Ma, and produced numerous domes, obsidian flows, and pyroclastic deposits. Temporally equivalent basalts erupted in the valleys north and east of the Mineral Mountains, hinting at a potential relationship between mafic and felsic volcanic activity. Here we test competing hypotheses. Are the rhyolites products of extreme fractionation of the coeval basalts? Or do they represent anatectic melts of the granitoids through which they erupted? We address these questions through modeling with new whole rock geochemical data and zircon trace element chemistry, thermometry, and U/Pb LA-ICPMS dates. We couple these data with new 40Ar/39Ar eruption ages to improve upon the volcanic stratigraphy and address the recurrence interval for the most evolved rhyolites. Geochemical data from zircon crystals extracted from six domes suggest increasing differentiation with age and eruptive location, however there is minimal evidence for recycling of earlier crystallized zircon. These data suggest that magma batches were isolated from one another and zircon nucleation and crystallization occurred close to the eruption, thus limiting the residence time of the magmas. These data also perhaps suggest that the magmas were generated in small batches within each of the granitoids rather than from a large crystal mush body underlying the region, as seen at large silicic systems. Our preliminary geochemical models and zircon petrochronology eliminate extreme fractionation and favor local anatectic melting of different granitoids as a mechanism to produce chemical signatures observed in the Quaternary rhyolites in the Mineral Mountains. 
    more » « less
  4. null (Ed.)
    Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province. 
    more » « less
  5. Abstract

    Despite the hazard posed by explosive silicic eruptions, the magma storage conditions and dynamics that precede these events remain controversial. The Laguna del Maule volcanic field, central Chile, is an exceptional example of postglacial (younger than ca. 20,000 years) rhyolite volcanism and sustained unrest driven by a large, shallow, active silicic magma system. New zircon petrochronologic data reveal that compositionally distinct domains developed concurrently within the Laguna del Maule magma reservoir, which produced two episodes of concentrated rhyolitic eruptions at 23–19 and 8–2 ka. Zircon crystallization ages record 160 kyr of magma emplacement resulting in a several hundreds of cubic kilometers reservoir that has been imaged geophysically. The average magma emplacement rate inferred from the zircon geochronology and tomographically defined magma volume is consistent with those required by thermal models to maintain a shallow silicic system. Ti‐in‐zircon temperatures of crystal cores and rims and hiatuses in crystal growth indicates most of this volume persisted in a near‐solidus state. However, consistent patterns of trace element zoning in crystal interiors and crystallization rates derived from a model of diffusion‐limited zircon growth suggest the erupted rhyolite magma batches originated from long‐lived hot zones of extractable mush embedded within the larger, cool reservoir of rigid mush. These contrasting, coeval magma storage conditions obviate a simple hot versus cold storage dichotomy for large silicic magma systems.

     
    more » « less