skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1941317

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Ice-nucleating particles (INPs) initiate primary ice formation in Arctic mixed-phase clouds (MPCs), altering cloud radiative properties and modulating precipitation. For atmospheric INPs, the complexity of their spatiotemporal variations, heterogeneous sources, and evolution via intricate atmospheric interactions challenge the understanding of their impact on microphysical processes in Arctic MPCs and induce an uncertain representation in climate models. In this work, we performed a comprehensive analysis of atmospheric aerosols at the Arctic coastal site in Ny-Ålesund (Svalbard, Norway) from October to November 2019, including their ice nucleation ability, physicochemical properties, and potential sources. Overall, INP concentrations (NINP) during the observation season were approximately up to 3 orders of magnitude lower compared to the global average, with several samples showing degradation of NINP after heat treatment, implying the presence of proteinaceous INPs. Particle fluorescence was substantially associated with INP concentrations at warmer ice nucleation temperatures, indicating that in the far-reaching Arctic, aerosols of biogenic origin throughout the snow- and ice-free season may serve as important INP sources. In addition, case studies revealed the links between elevated NINP and heat lability, fluorescence, high wind speeds originating from the ocean, augmented concentration of coarse-mode particles, and abundant organics. Backward trajectory analysis demonstrated a potential connection between high-latitude dust sources and high INP concentrations, while prolonged air mass history over the ice pack was identified for most scant INP cases. The combination of the above analyses demonstrates that the abundance, physicochemical properties, and potential sources of INPs in the Arctic are highly variable despite its remote location. 
    more » « less
  2. Abstract. In this study, we present atmospheric ice-nucleating particle (INP)concentrations from the Gruvebadet (GVB) observatory in Ny-Ålesund(Svalbard). All aerosol particle sampling activities were conducted in April–August 2018. Ambient INP concentrations (nINP) were measured for aerosolparticles collected on filter samples by means of two offline instruments:the Dynamic Filter Processing Chamber (DFPC) and the West Texas CryogenicRefrigerator Applied to Freezing Test system (WT-CRAFT) to assesscondensation and immersion freezing, respectively. DFPC measured nINPs for aset of filters collected through two size-segregated inlets: one fortransmitting particulate matter of less than 1 µm (PM1), theother for particles with an aerodynamic diameter of less than 10 µmaerodynamic diameter (PM10). Overall, nINPPM10 measured by DFPC ata water saturation ratio of 1.02 ranged from 3 to 185 m−3 attemperatures (Ts) of −15 to −22 ∘C. On average, the super-micrometer INP (nINPPM10-nINPPM1) accounted forapproximately 20 %–30 % of nINPPM10 in spring, increasing in summer to45 % at −22 ∘C and 65 % at −15 ∘C. This increase in super-micrometer INP fraction towards summer suggests that super-micrometeraerosol particles play an important role as the source of INPs in theArctic. For the same T range, WT-CRAFT measured 1 to 199 m−3. Althoughthe two nINP datasets were in general agreement, a notable nINP offset wasobserved, particularly at −15 ∘C. Interestingly, the results ofboth DFPC and WT-CRAFT measurements did not show a sharp increase in nINPfrom spring to summer. While an increase was observed in a subset of ourdata (WT-CRAFT, between −18 and −21 ∘C), the spring-to-summernINP enhancement ratios never exceeded a factor of 3. More evident seasonal variability was found, however, in our activated fraction (AF) data, calculated by scaling the measured nINP to the total aerosol particleconcentration. In 2018, AF increased from spring to summer. This seasonal AFtrend corresponds to the overall decrease in aerosol concentration towardssummer and a concomitant increase in the contribution of super-micrometer particles. Indeed, the AF of coarse particles resulted markedly higher thanthat of sub-micrometer ones (2 orders of magnitude). Analysis of low-traveling back-trajectories and meteorological conditions at GVB matched to our INP data suggests that the summertime INP population isinfluenced by both terrestrial (snow-free land) and marine sources. Ourspatiotemporal analyses of satellite-retrieved chlorophyll a, as well as spatial source attribution, indicate that the maritime INPs at GVB may comefrom the seawaters surrounding the Svalbard archipelago and/or in proximityto Greenland and Iceland during the observation period. Nevertheless,further analyses, performed on larger datasets, would be necessary to reachfirmer and more general conclusions. 
    more » « less