Abstract Wildfires in the western United States are large sources of particulate matter, and the area burned by wildfires is predicted to increase in the future. Some particles released from wildfires can affect cloud formation by serving as ice‐nucleating particles (INPs). INPs have numerous impacts on cloud radiative properties and precipitation development. Wildfires are potentially important sources of INPs, as indicated from previous measurements, but their abundance in the free troposphere has not been quantified. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen campaign sampled free tropospheric immersion‐freezing INPs from smoke plumes near their source and downwind, along with widespread aged smoke. The results indicate an enhancement of INPs in smoke plumes relative to out‐of‐plume background air, but the magnitude of enhancement was both temperature and fire dependent. The majority of INPs were inferred to be predominately organic in composition with some contribution from biological sources at modest super cooling, and contributions from minerals at deeper super cooling. A fire involving primarily sagebrush shrub land and aspen forest fuels had the highest INP concentrations measured in the campaign, which is partially attributed to the INP characteristics of lofted, uncombusted plant material. Electron microscopy analysis of INPs also indicated tar balls present in this fire. Parameterization of the plume INP data on a per‐unit‐aerosol surface area basis confirmed that smoke is not an efficient source of INPs. Nevertheless, the high numbers of particles released from, and ubiquity of western US wildfires in summertime, regionally elevate INP concentrations in the free troposphere.
more »
« less
Ice-nucleating particle concentration measurements from Ny-Ålesund during the Arctic spring–summer in 2018
Abstract. In this study, we present atmospheric ice-nucleating particle (INP)concentrations from the Gruvebadet (GVB) observatory in Ny-Ålesund(Svalbard). All aerosol particle sampling activities were conducted in April–August 2018. Ambient INP concentrations (nINP) were measured for aerosolparticles collected on filter samples by means of two offline instruments:the Dynamic Filter Processing Chamber (DFPC) and the West Texas CryogenicRefrigerator Applied to Freezing Test system (WT-CRAFT) to assesscondensation and immersion freezing, respectively. DFPC measured nINPs for aset of filters collected through two size-segregated inlets: one fortransmitting particulate matter of less than 1 µm (PM1), theother for particles with an aerodynamic diameter of less than 10 µmaerodynamic diameter (PM10). Overall, nINPPM10 measured by DFPC ata water saturation ratio of 1.02 ranged from 3 to 185 m−3 attemperatures (Ts) of −15 to −22 ∘C. On average, the super-micrometer INP (nINPPM10-nINPPM1) accounted forapproximately 20 %–30 % of nINPPM10 in spring, increasing in summer to45 % at −22 ∘C and 65 % at −15 ∘C. This increase in super-micrometer INP fraction towards summer suggests that super-micrometeraerosol particles play an important role as the source of INPs in theArctic. For the same T range, WT-CRAFT measured 1 to 199 m−3. Althoughthe two nINP datasets were in general agreement, a notable nINP offset wasobserved, particularly at −15 ∘C. Interestingly, the results ofboth DFPC and WT-CRAFT measurements did not show a sharp increase in nINPfrom spring to summer. While an increase was observed in a subset of ourdata (WT-CRAFT, between −18 and −21 ∘C), the spring-to-summernINP enhancement ratios never exceeded a factor of 3. More evident seasonal variability was found, however, in our activated fraction (AF) data, calculated by scaling the measured nINP to the total aerosol particleconcentration. In 2018, AF increased from spring to summer. This seasonal AFtrend corresponds to the overall decrease in aerosol concentration towardssummer and a concomitant increase in the contribution of super-micrometer particles. Indeed, the AF of coarse particles resulted markedly higher thanthat of sub-micrometer ones (2 orders of magnitude). Analysis of low-traveling back-trajectories and meteorological conditions at GVB matched to our INP data suggests that the summertime INP population isinfluenced by both terrestrial (snow-free land) and marine sources. Ourspatiotemporal analyses of satellite-retrieved chlorophyll a, as well as spatial source attribution, indicate that the maritime INPs at GVB may comefrom the seawaters surrounding the Svalbard archipelago and/or in proximityto Greenland and Iceland during the observation period. Nevertheless,further analyses, performed on larger datasets, would be necessary to reachfirmer and more general conclusions.
more »
« less
- Award ID(s):
- 1941317
- PAR ID:
- 10329922
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 21
- Issue:
- 19
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 14725 to 14748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Ice-nucleating particles (INPs) are efficiently removed fromclouds through precipitation, a convenience of nature for the study of thesevery rare particles that influence multiple climate-relevant cloudproperties including ice crystal concentrations, size distributions andphase-partitioning processes. INPs suspended in precipitation can be used toestimate in-cloud INP concentrations and to infer their originalcomposition. Offline droplet assays are commonly used to measure INPconcentrations in precipitation samples. Heat and filtration treatmentsare also used to probe INP composition and size ranges. Many previousstudies report storing samples prior to INP analyses, but little is knownabout the effects of storage on INP concentration or their sensitivity totreatments. Here, through a study of 15 precipitation samples collected at acoastal location in La Jolla, CA, USA, we found INP concentration changes upto > 1 order of magnitude caused by storage to concentrations ofINPs with warm to moderate freezing temperatures (−7 to−19 ∘C). We compared four conditions: (1) storage at roomtemperature (+21–23 ∘C), (2) storage at +4 ∘C, (3) storage at −20 ∘C and (4) flash-freezing samples with liquid nitrogen prior to storage at −20 ∘C. Results demonstrate that storage can lead to bothenhancements and losses of greater than 1 order of magnitude, withnon-heat-labile INPs being generally less sensitive to storage regime, butsignificant losses of INPs smaller than 0.45 µm in all tested storageprotocols. Correlations between total storage time (1–166 d) and changesin INP concentrations were weak across sampling protocols, with theexception of INPs with freezing temperatures ≥ −9 ∘C in samples stored at room temperature. We provide thefollowing recommendations for preservation of precipitation samples fromcoastal or marine environments intended for INP analysis: that samples bestored at −20 ∘C to minimize storage artifacts, thatchanges due to storage are likely an additional uncertainty in INPconcentrations, and that filtration treatments be applied only to freshsamples. At the freezing temperature −11 ∘C, average INPconcentration losses of 51 %, 74 %, 16 % and 41 % were observed foruntreated samples stored using the room temperature, +4, −20 ∘C, and flash-frozen protocols, respectively.Finally, the estimated uncertainties associated with the four storage protocolsare provided for untreated, heat-treated and filtered samples for INPsbetween −9 and −17 ∘C.more » « less
-
null (Ed.)Abstract. Glaciation in mixed-phase clouds predominantly occurs through theimmersion-freezing mode where ice-nucleating particles (INPs) immersedwithin supercooled droplets induce the nucleation of ice. Modelrepresentations of this process currently are a large source of uncertaintyin simulating cloud radiative properties, so to constrain these estimates,continuous-flow diffusion chamber (CFDC)-style INP devices are commonly usedto assess the immersion-freezing efficiencies of INPs. This study explored anew approach to operating such an ice chamber that provides maximumactivation of particles without droplet breakthrough and correction factorambiguity to obtain high-quality INP measurements in a manner thatpreviously had not been demonstrated to be possible. The conditioningsection of the chamber was maintained at −20 ∘C and water relative humidity (RHw) conditions of 113 % to maximize the droplet activation,and the droplets were supercooled with an independentlytemperature-controlled nucleation section at a steady cooling rate(0.5 ∘C min−1) to induce the freezing of droplets andevaporation of unfrozen droplets. The performance of the modified compactice chamber (MCIC) was evaluated using four INP species: K-feldspar,illite-NX, Argentinian soil dust, and airborne soil dusts from an arableregion that had shown ice nucleation over a wide span of supercooledtemperatures. Dry-dispersed and size-selected K-feldspar particles weregenerated in the laboratory. Illite-NX and soil dust particles were sampledduring the second phase of the Fifth International Ice Nucleation Workshop(FIN-02) campaign, and airborne soil dust particles were sampled from anambient aerosol inlet. The measured ice nucleation efficiencies of modelaerosols that had a surface active site density (ns) metric were higher but mostly agreed within 1 order of magnitude compared to results reported in the literature.more » « less
-
Abstract Supercooled liquid clouds are ubiquitous over the Southern Ocean (SO), even to temperatures below −20°C, and comprise a large fraction of the marine boundary layer (MBL) clouds. Earth system models and reanalysis products have struggled to reproduce the observed cloud phase distribution and occurrence of cloud ice in the region. Recent simulations found the microphysical representation of ice nucleation and growth has a large impact on these properties, however, measurements of SO ice nucleating particles (INPs) to validate simulations are sparse. This study presents measurements of INPs from simultaneous aircraft and ship campaigns conducted over the SO in austral summer 2018, which include the first in situ observations in and above cloud in the region. Our results confirm recent observations that INP concentrations are uniformly lower than measurements made in the late 1960s. While INP concentrations below and above cloud are similar, higher ice nucleation efficiency above cloud supports model simulations that the dominant INP composition varies with height. Model parameterizations based solely on aerosol properties capture the mean relationship between INP concentration and temperature but not the observed variability, which is likely related to the only modest correlations observed between INPs and environmental or aerosol metrics. Including wind speed in addition to activation temperature in a marine INP parameterization reduces bias but does not explain the large range of observed INP concentrations. Direct and indirect inference of marine INP size suggests MBL INPs, at least during Austral summer, are dominated by particles with diameters smaller than 500 nm.more » « less
-
Abstract. Ice-nucleating particles (INPs) represent a rare subset of aerosol particlesthat initiate cloud droplet freezing at temperatures above the homogenousfreezing point of water (−38 ∘C). Considering that the oceancovers 71 % of the Earth's surface and represents a large potential sourceof INPs, it is imperative that the identities, properties and relativeemissions of ocean INPs become better understood. However, the specificunderlying drivers of marine INP emissions remain largely unknown due tolimited observations and the challenges associated with isolating rare INPs. Bygenerating isolated nascent sea spray aerosol (SSA) over a range ofbiological conditions, mesocosm studies have shown that marine microbes cancontribute to INPs. Here, we identify 14 (30 %) cultivable halotolerantice-nucleating microbes and fungi among 47 total isolates recovered fromprecipitation and aerosol samples collected in coastal air in southernCalifornia. Ice-nucleating (IN) isolates collected in coastal air were nucleated ice fromextremely warm to moderate freezing temperatures (−2.3 to −18 ∘C). While some Gammaproteobacteria and fungi are known to nucleate ice attemperatures as high as −2 ∘C, Brevibacterium sp. is the first Actinobacteriafound to be capable of ice nucleation at a relatively high freezingtemperature (−2.3 ∘C). Air mass trajectory analysis demonstratesthat marine aerosol sources were dominant during all sampling periods, andphylogenetic analysis indicates that at least 2 of the 14 IN isolates areclosely related to marine taxa. Moreover, results from cell-washingexperiments demonstrate that most IN isolates maintained freezing activityin the absence of nutrients and cell growth media. This study supportsprevious studies that implicated microbes as a potential source of marineINPs, and it additionally demonstrates links between precipitation, marineaerosol and IN microbes.more » « less
An official website of the United States government

