skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1941826

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Integrated optomechanical systems are a leading platform for manipulating, sensing, and distributing quantum information, but are limited by residual optical heating. Here, we demonstrate a two-dimensional optomechanical crystal (OMC) geometry with increased thermal anchoring and a mechanical mode at 7.4 GHz, well aligned with the operation range of cryogenic microwave hardware and piezoelectric transducers. The eight times better thermalization than current one-dimensional OMCs, large optomechanical coupling rates,g0/2π  ≈  880 kHz, and high optical quality factors,Qopt = 2.4 × 105, allow ground-state cooling (nm = 0.32) of the acoustic mode from 3 K and entering the optomechanical strong-coupling regime. In pulsed sideband asymmetry measurements, we show ground-state operation (nm < 0.45) at temperatures below 10 mK, with repetition rates up to 3 MHz, generating photon-phonon pairs at  ≈ 147 kHz. Our results extend optomechanical system capabilities and establish a robust foundation for future microwave-to-optical transducers with entanglement rates exceeding state-of-the-art superconducting qubit decoherence rates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Nanomechanical oscillators offer numerous advantages for quantum technologies. Their integration with superconducting qubits shows promise for hardware-efficient quantum error-correction protocols involving superpositions of mechanical coherent states. Limitations of this approach include mechanical decoherence processes, particularly two-level system (TLS) defects, which have been widely studied using classical fields and detectors. In this manuscript, we use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a piezoelectrically coupled phononic crystal cavity. This enables a high-resolution study of mechanical dissipation and dephasing in coherent states of variable size ($$\bar{n}\simeq 1-10$$ n ¯ 1 10 phonons). We observe nonexponential relaxation and state size-dependent reduction of the dephasing rate, which we attribute to TLS. Using a numerical model, we reproduce the dissipation signatures (and to a lesser extent, the dephasing signatures) via emission into a small ensemble (N = 5) of rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Lithium niobate is a promising material for developing quantum acoustic technologies due to its strong piezoelectric effect and availability in the form of crystalline thin films of high quality. However, at radio frequencies and cryogenic temperatures, these resonators are limited by the presence of decoherence and dephasing due to two-level systems. To mitigate these losses and increase device performance, a more detailed picture of the microscopic nature of these loss channels is needed. In this study, we fabricate several lithium niobate acoustic wave resonators and apply different processing steps that modify their surfaces. These treatments include argon ion sputtering, annealing, and acid cleans. We characterize the effects of these treatments using three surface-sensitive measurements: cryogenic microwave spectroscopy measuring density and coupling of TLS to mechanics, X-ray photoelectron spectroscopy and atomic force microscopy. We learn from these studies that, surprisingly, increases of TLS density may accompany apparent improvements in the surface quality as probed by the latter two approaches. Our work outlines the importance that surfaces and fabrication techniques play in altering acoustic resonator coherence, and suggests gaps in our understanding as well as approaches to address them. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Delay lines that store quantum information are crucial for advancing quantum repeaters and hardware efficient quantum computers. Traditionally, they are realized as extended systems that support wave propagation but provide limited control over the propagating fields. Here, we introduce a parametrically addressed delay line for microwave photons that provides a high level of control over the stored pulses. By parametrically driving a three-wave mixing circuit element that is weakly hybridized with an ensemble of resonators, we engineer a spectral response that simulates that of a physical delay line, while providing fast control over the delay line’s properties. We demonstrate this novel degree of control by choosing which photon echo to emit, translating pulses in time, and even swapping two pulses, all with pulse energies on the order of a single photon. We also measure the noise added from our parametric interactions and find it is much less than one photon. 
    more » « less