Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Komeili, Arash (Ed.)ABSTRACT The bacterial nucleoid is not just a genetic repository—it serves as a dynamic scaffold for spatially organizing key cellular components. ParA-family ATPases exploit this nucleoid matrix to position a wide range of cargos, yet how nucleoid compaction influences these positioning reactions remains poorly understood. We previously characterized the maintenance of carboxysome distribution (Mcd) system in the cyanobacteriumSynechococcus elongatusPCC 7942, where the ParA-like ATPase McdA binds the nucleoid and interacts with its partner protein, McdB, to generate dynamic gradients that distribute carboxysomes for optimal carbon fixation. Here, we investigate how nucleoid compaction impacts carboxysome positioning, particularly during metabolic dormancy when McdAB activity is downregulated. We demonstrate that a compacted nucleoid maintains carboxysome organization in the absence of active McdAB-driven positioning. This finding reveals that the nucleoid is not merely a passive matrix for positioning but a dynamic player in spatial organization. Given the widespread role of ParA-family ATPases in the positioning of diverse cellular cargos, our study suggests that the nucleoid compaction state is a fundamental, yet underappreciated, determinant of mesoscale organization across bacteria. IMPORTANCEBacteria can organize their internal components in specific patterns to ensure proper function and faithful inheritance after cell division. In the cyanobacteriumSynechococcus elongatus, protein-based compartments called carboxysomes fix carbon dioxide and are distributed in the cell by a two-protein positioning system. Here, we discovered that when cells stop growing or face stress, these positioning proteins stop working, yet carboxysomes remain distributed in the cell. Our study shows that the bacterial chromosome, which holds genetic information, can also act as a flexible scaffold that holds carboxysomes in place when compacted. This insight reveals that the bacterial chromosome plays a key physical role in organizing the cell. Similar positioning systems are found across many types of bacteria; therefore, our findings suggest that nucleoid compaction may be a universal and underappreciated factor in maintaining spatial order in cells that are not actively growing.more » « lessFree, publicly-accessible full text available October 8, 2026
-
ABSTRACT Themaintenance ofcarboxysomedistribution (Mcd) system comprises the proteins McdA and McdB, which spatially organize carboxysomes to promote efficient carbon fixation and ensure their equal inheritance during cell division. McdA, a member of the ParA/MinD family of ATPases, forms dynamic gradients on the nucleoid that position McdB-bound carboxysomes. McdB belongs to a widespread but poorly characterized class of ParA/MinD partner proteins, and the molecular basis of its interaction with McdA remains unclear. Here, we demonstrate that the N-terminal 20 residues ofH. neapolitanusMcdB are both necessary and sufficient for interaction with McdA. Within this region, we identify three lysine residues whose individual substitution modulates McdA binding and leads to distinct carboxysome organization phenotypes. Notably, lysine 7 (K7) is critical for McdA interaction: substitutions at this site result in the formation of a single carboxysome aggregate positioned at mid-nucleoid. This phenotype contrasts with that of an McdB deletion, in which carboxysome aggregates lose their nucleoid association and become sequestered at the cell poles. These findings suggest that weakened McdA–McdB interactions are sufficient to maintain carboxysome aggregates on the nucleoid but inadequate for partitioning individual carboxysomes across it. We propose that, within the ParA/MinD family of ATPases, cargo positioning and partitioning are mechanistically separable: weak interactions with the cognate partner can mediate positioning, whereas effective partitioning requires stronger interactions capable of overcoming cargo self-association forces.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins inEscherichia colias a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.more » « less
-
Abstract Curli are functional amyloids present on the outer membrane ofE. coli. CsgF is required for the proper assembly of curli. Here, we found that the CsgF phase separates in vitro and that the ability of CsgF variants to phase-separate is tightly correlated with CsgF function during curli biogenesis. Substitution of phenylalanine residues in the CsgF N-terminus both reduced the propensity of CsgF to phase-separate and impaired curli assembly. Exogenous addition of purified CsgF complementedcsgF −cells. This exogenous addition assay was used to assess the ability of CsgF variants to complementcsgF ‒cells. CsgF on the cell surface modulated the secretion of CsgA, the curli major subunit, to the cell surface. We also found that the CsgB nucleator protein can form SDS-insoluble aggregates within the dynamic CsgF condensate. We propose that these multicomponent CsgF-B condensates form a nucleation-competent complex that templates CsgA amyloid formation on the cell surface.more » « less
-
Abstract Carboxysomes are protein‐based organelles essential for carbon fixation in cyanobacteria and proteobacteria. Previously, we showed that the cyanobacterial nucleoid is used to equally space out β‐carboxysomes across cell lengths by a two‐component system (McdAB) in the model cyanobacteriumSynechococcus elongatusPCC 7942. More recently, we found that McdAB systems are widespread among β‐cyanobacteria, which possess β‐carboxysomes, but are absent in α‐cyanobacteria, which possess structurally and phyletically distinct α‐carboxysomes. Cyanobacterial α‐carboxysomes are thought to have arisen in proteobacteria and then horizontally transferred into cyanobacteria, which suggests that α‐carboxysomes in proteobacteria may also lack the McdAB system. Here, using the model chemoautotrophic proteobacteriumHalothiobacillus neapolitanus, we show that a McdAB system distinct from that of β‐cyanobacteria operates to position α‐carboxysomes across cell lengths. We further show that this system is widespread among α‐carboxysome‐containing proteobacteria and that cyanobacteria likely inherited an α‐carboxysome operon from a proteobacterium lacking themcdABlocus. These results demonstrate that McdAB is a cross‐phylum two‐component system necessary for positioning both α‐ and β‐carboxysomes. The findings have further implications for understanding the positioning of other protein‐based bacterial organelles involved in diverse metabolic processes. Plain language summaryCyanobacteria are well known to fix atmospheric CO2into sugars using the enzyme Rubisco. Less appreciated are the carbon‐fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.more » « less
-
Abstract Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell‐sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells—compartmentalization and self‐organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self‐organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under:Biology‐Inspired Nanomaterials > Lipid‐Based StructuresBiology‐Inspired Nanomaterials > Protein and Virus‐Based Structuresmore » « less
-
Free, publicly-accessible full text available December 1, 2026
-
Goley, Erin (Ed.)Bacterial microcompartments (BMCs) are widespread, protein-based organelles that regulate metabolism. The model for studying BMCs is the carboxysome, which facilitates carbon fixation in several autotrophic bacteria. Carboxysomes can be distinguished as type α or β, which are structurally and phyletically distinct. We recently characterized the maintenance of carboxysome distribution (Mcd) systems responsible for spatially regulating α- and β-carboxysomes, consisting of the proteins McdA and McdB. McdA is an ATPase that drives carboxysome positioning, and McdB is the adaptor protein that directly interacts with carboxysomes to provide cargo specificity. The molecular features of McdB proteins that specify their interactions with carboxysomes, and whether these are similar between α- and β-carboxysomes, remain unknown. Here, we identify C-terminal motifs containing an invariant tryptophan necessary for α- and β-McdBs to associate with α- and β-carboxysomes, respectively. Substituting this tryptophan with other aromatic residues reveals corresponding gradients in the efficiency of carboxysome colocalization and positioning by McdB in vivo. Intriguingly, these gradients also correlate with the ability of McdB to form condensates in vitro. The results reveal a shared mechanism underlying McdB adaptor protein binding to carboxysomes, and potentially other BMCs. Our findings also implicate condensate formation as playing a key role in this association.more » « less
An official website of the United States government
