skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1942487

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Heart failure is a chronic disease, the symptoms of which occur due to a lack of cardiac output. It can be better managed with continuous and real time monitoring. Some efforts have been made in the past for the management of heart failure. Most of these efforts were based on a single parameter for example thoracic impedance or heart rate alone. Herein, we report a wearable device that can provide monitoring of multiple physiological parameters related to heart failure. It is based on the sensing of multiple parameters simultaneously including thoracic impedance, heart rate, electrocardiogram and motion activity. These parameters are measured using different sensors which are embedded in a wearable belt for their continuous and real time monitoring. The healthcare wearable device has been tested in different conditions including sitting, standing, laying, and walking. Results demonstrate that the reported wearable device keeps track of the aforementioned parameters in all conditions.

     
    more » « less
  2. The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Since its first appearance in 1981, HIV-1 has remained a global concern. Current methods for diagnosing HIV-1, while effective, are mostly specific to a given subtype of HIV-1 and often require expensive equipment and highly trained individuals to collect and process the sample. It is necessary to develop a sensitive diagnostic method that can be administered with minimal equipment to provide better care in low-resource settings. Loop-mediated isothermal amplification is a rapid and sensitive method for detecting the presence of specific nucleic acid sequences. Herein we report the development and comparison of two different HIV LAMP assays, integrase and VPR, as well as the comparison between TRIZol and magnetic beads RNA extraction methods for each assay. Our analysis shows that the integrase assay was able to detect the virus from multiple subtypes in under 30 min with a variable limit of detection (LOD) that was dependent on the HIV-1 subtype.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  4. Cardiovascular disease is one of the leading causes of death in the world. Heart failure is a cardiovascular disease in which the heart is unable to pump sufficient blood to fulfill the body’s requirements and can lead to fluid overload. Traditional solutions are not adequate to address the progression of heart failure. Herein, we report a body-mounted wearable sensor to monitor the parameters related to heart failure. These include heart rate, blood oxygen saturation, thoracic impedance, and activity status. The device is compact and wearable and measures the parameters continuously in real time. The device is an Internet of Things (IoT) device connected with a cloud-based database enabling the parameters to be visualized on a mobile application.

     
    more » « less
  5. Exosomes have gained recognition in cancer diagnostics and therapeutics. However, most exosome isolation methods are time-consuming, costly, and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we present a double filtration microfluidic device that can rapidly isolate exosomes via size-exclusion principles in POC settings. The device can efficiently isolate exosomes from 50–100 µL of plasma within 50 min. The device was compared against an already established exosome isolation method, polyethylene glycol (PEG)-based precipitation. The findings showed that both methods yield comparable exosome sizes and purity; however, exosomes isolated from the device exhibited an earlier miRNA detection compared to exosomes obtained from the PEG-based isolation. A comparative analysis of exosomes collected from membrane filters with 15 nm and 30 nm pore sizes showed a similarity in exosome size and miRNA detection, with significantly increased sample purity. Finally, TEM images were taken to analyze how the developed devices and PEG-based isolation alter exosome morphology and to analyze exosome sizes. This developed microfluidic device is cost-efficient and time-efficient. Thus, it is ideal for use in low-resourced and POC settings to aid in cancer and disease diagnostics and therapeutics.

     
    more » « less
  6. Pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming one of the leading causes of cancer-related deaths in the United States, and with its high mortality rate, there is a pressing need to develop sensitive and robust methods for detection. Exosomal biomarker panels provide a promising avenue for PDAC screening since exosomes are highly stable and easily harvested from body fluids. PDAC-associated miRNAs packaged within these exosomes could be used as diagnostic markers. We analyzed a series of 18 candidate miRNAs via RT-qPCR to identify the differentially expressed miRNAs (p < 0.05, t-test) between plasma exosomes harvested from PDAC patients and control patients. From this analysis, we propose a four-marker panel consisting of miR-93-5p, miR-339-3p, miR-425-5p, and miR-425-3p with an area under the curve (AUC) of the receiver operator characteristic curve (ROC) of 0.885 with a sensitivity of 80% and a specificity of 94.7%, which is comparable to the CA19-9 standard PDAC marker diagnostic. 
    more » « less
  7. Hepatitis C virus (HCV) infections occur in approximately 3% of the world population. The development of an enhanced and extensive-scale screening is required to accomplish the World Health Organization’s (WHO) goal of eliminating HCV as a public health problem by 2030. However, standard testing methods are time-consuming, expensive, and challenging to deploy in remote and underdeveloped areas. Therefore, a cost-effective, rapid, and accurate point-of-care (POC) diagnostic test is needed to properly manage the disease and reduce the economic burden caused by high case numbers. Herein, we present a fully automated reverse-transcription loop-mediated isothermal amplification (RT-LAMP)-based molecular diagnostic set-up for rapid HCV detection. The set-up consists of an automated disposable microfluidic chip, a small surface heater, and a reusable magnetic actuation platform. The microfluidic chip contains multiple chambers in which the plasma sample is processed. The system utilizes SYBR green dye to detect the amplification product with the naked eye. The efficiency of the microfluidic chip was tested with human plasma samples spiked with HCV virions, and the limit of detection observed was 500 virions/mL within 45 min. The entire virus detection process was executed inside a uniquely designed, inexpensive, disposable, and self-driven microfluidic chip with high sensitivity and specificity. 
    more » « less
  8. The development of point-of-care, cost-effective, and easy-to-use assays for the accurate counting of CD4+ T cells remains an important focus for HIV-1 disease management. The CD4+ T cell count provides an indication regarding the overall success of HIV-1 treatments. The CD4+ T count information is equally important for both resource-constrained regions and areas with extensive resources. Hospitals and other allied facilities may be overwhelmed by epidemics or other disasters. An assay for a physician’s office or other home-based setting is becoming increasingly popular. We have developed a technology for the rapid quantification of CD4+ T cells. A double antibody selection process, utilizing anti-CD4 and anti-CD3 antibodies, is tested and provides a high specificity. The assay utilizes a microfluidic chip coated with the anti-CD3 antibody, having an improved antibody avidity. As a result of enhanced binding, a higher flow rate can be applied that enables an improved channel washing to reduce non-specific bindings. A wide-field optical imaging system is also developed that provides the rapid quantification of cells. The designed optical setup is portable and low-cost. An ImageJ-based program is developed for the automatic counting of CD4+ T cells. We have successfully isolated and counted CD4+ T cells with high specificity and efficiency greater than 90%. 
    more » « less
  9. null (Ed.)
    The dengue virus (DENV) is a vector-borne flavivirus that infects around 390 million individuals each year with 2.5 billion being in danger. Having access to testing is paramount in preventing future infections and receiving adequate treatment. Currently, there are numerous conventional methods for DENV testing, such as NS1 based antigen testing, IgM/IgG antibody testing, and Polymerase Chain Reaction (PCR). In addition, novel methods are emerging that can cut both cost and time. Such methods can be effective in rural and low-income areas throughout the world. In this paper, we discuss the structural evolution of the virus followed by a comprehensive review of current dengue detection strategies and methods that are being developed or commercialized. We also discuss the state of art biosensing technologies, evaluated their performance and outline strategies to address challenges posed by the disease. Further, we outline future guidelines for the improved usage of diagnostic tools during recurrence or future outbreaks of DENV. 
    more » « less