skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in Cardiovascular Wearable Devices
Cardiovascular diseases are a leading cause of death worldwide. They mainly include coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular diseases can be better managed and diagnosed using wearable devices. Wearable devices, in comparison to traditional cardiovascular diagnostic tools, are not only inexpensive but also have the potential to provide continuous real-time monitoring. This paper reviews some of the recent advances in cardiovascular wearable devices. It discusses traditional implantable devices for cardiovascular diseases as well as wearable devices. The different types of wearable devices are categorized based on different technologies, namely using galvanic contact, photoplethysmography (PPG), and radio frequency (RF) waves. It also highlights the use of artificial intelligence (AI) in cardiovascular disease diagnostics as well as future perspectives on cardiovascular devices.  more » « less
Award ID(s):
1942487
PAR ID:
10631080
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biosensors
Volume:
14
Issue:
11
ISSN:
2079-6374
Page Range / eLocation ID:
525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cardiovascular disease is one of the leading causes of death in the world. Heart failure is a cardiovascular disease in which the heart is unable to pump sufficient blood to fulfill the body’s requirements and can lead to fluid overload. Traditional solutions are not adequate to address the progression of heart failure. Herein, we report a body-mounted wearable sensor to monitor the parameters related to heart failure. These include heart rate, blood oxygen saturation, thoracic impedance, and activity status. The device is compact and wearable and measures the parameters continuously in real time. The device is an Internet of Things (IoT) device connected with a cloud-based database enabling the parameters to be visualized on a mobile application. 
    more » « less
  2. Abstract Background and Objectives Substance use disorders (SUDs) are chronic relapsing diseases characterized by significant morbidity and mortality. Phenomenologically, patients with SUDs present with a repeating cycle of intoxication, withdrawal, and craving, significantly impacting their diagnosis and treatment. There is a need for better identification and monitoring of these disease states. Remote monitoring chronic illness with wearable devices offers a passive, unobtrusive, constant physiological data assessment. We evaluate the current evidence base for remote monitoring of nonalcohol, nonnicotine SUDs. Methods We performed a systematic, comprehensive literature review and screened 1942 papers. Results We found 15 studies that focused mainly on the intoxication stage of SUD. These studies used wearable sensors measuring several physiological parameters (ECG, HR, O 2 , Accelerometer, EDA, temperature) and implemented study‐specific algorithms to evaluate the data. Discussion and Conclusions Studies were extracted, organized, and analyzed based on the three SUD disease states. The sample sizes were relatively small, focused primarily on the intoxication stage, had low monitoring compliance, and required significant computational power preventing “real‐time” results. Cardiovascular data was the most consistently valuable data in the predictive algorithms. This review demonstrates that there is currently insufficient evidence to support remote monitoring of SUDs through wearable devices. Scientific Significance This is the first systematic review to show the available data on wearable remote monitoring of SUD symptoms in each stage of the disease cycle. This clinically relevant approach demonstrates what we know and do not know about the remote monitoring of SUDs within disease states. 
    more » « less
  3. Stress increases the risk of several mental and physical health problems like anxiety, hypertension, and cardiovascular diseases. Better guidance and interventions towards mitigating the impact of stress can be provided if stress can be monitored continuously. The recent proliferation of wearable devices and their capability in measuring several physiological signals related to stress have created the opportunity to measure stress continuously in the wild. Wearable devices used to measure physiological signals are mostly placed on the wrist and the chest. Though currently chest sensors, with/without wrist sensors, provide better results in detecting stress than using wrist sensors only, chest devices are not as convenient and prevalent as wrist devices, particularly in the free-living context. In this paper, we present a solution to detect stress using wrist sensors that emulate the gold standard chest sensors. Data from wrist sensors are translated into the data from chest sensors, and the translated data is used for stress detection without requiring the users to wear any device on the chest. We evaluated our solution using a public dataset, and results show that our solution detects stress with accuracy comparable to the gold standard chest devices which are impractical for daily use 
    more » « less
  4. Alterations in microvasculature represent some of the earliest pathological processes across a wide variety of human diseases. In many organs, however, inaccessibility and difficulty in directly imaging tissues prevent the assessment of microvascular changes, thereby significantly limiting their translation into improved patient care. The eye provides a unique solution by allowing for the non-invasive and direct visualization and quantification of many aspects of the human microvasculature, including biomarkers for structure, function, hemodynamics, and metabolism. Optical coherence tomography angiography (OCTA) studies have specifically identified reduced capillary densities at the level of the retina in several eye diseases including glaucoma. This narrative review examines the published data related to OCTA-assessed microvasculature biomarkers and major systemic cardiovascular disease. While loss of capillaries is being established in various ocular disease, pilot data suggest that changes in the retinal microvasculature, especially within the macula, may also reflect small vessel damage occurring in other organs resulting from cardiovascular disease. Current evidence suggests retinal microvascular biomarkers as potential indicators of major systemic cardiovascular diseases, including systemic arterial hypertension, atherosclerotic disease, and congestive heart failure. 
    more » « less
  5. Abstract Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease. 
    more » « less