skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942901

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Active metamaterials address fundamental limitations of passive media and have widely been recognized as necessary in numerous compelling applications such as cloaking and extreme noise absorption. However, most practical devices of interest have yet to be realized due to the lack of a suitable strategy for implementing bulk active metamaterials—those that involve interacting cells and functionality beyond one dimension. Here, we present such an active acoustic metamaterial design with bulk modulus and anisotropic mass density that can be independently programmed over wide value ranges. We demonstrate this ability experimentally in several examples, targeting acoustic properties that are hard to access otherwise, such as a bulk modulus significantly smaller than air, strong mass density anisotropy, and complex bulk modulus and mass density for high reflectionless sound absorption. This work enables the transition of active acoustic metamaterials from isolated proof-of-concept demonstrations to versatile bulk materials. 
    more » « less
  2. Abstract The ability to create linear systems that manifest broadband nonreciprocal wave propagation would provide for exquisite control over acoustic signals for electronic filtering in communication and noise control. Acoustic nonreciprocity has predominately been achieved by approaches that introduce nonlinear interaction, mean-flow biasing, smart skins, and spatio-temporal parametric modulation into the system. Each approach suffers from at least one of the following drawbacks: the introduction of modulation tones, narrow band filtering, and the interruption of mean flow in fluid acoustics. We now show that an acoustic media that is non-local and active provides a new means to break reciprocity in a linear fashion without these deleterious effects. We realize this media using a distributed network of interlaced subwavelength sensor–actuator pairs with unidirectional signal transport. We exploit this new design space to create a stable metamaterial with non-even dispersion relations and electronically tunable nonreciprocal behavior over a broad range of frequencies. 
    more » « less
  3. Tol, Serife; Nouh, Mostafa A; Shahab, Shima; Yang, Jinkyu; Huang, Guoliang; Li, Xiaopeng (Ed.)
  4. Active acoustic metamaterials are one path to acoustic properties difficult to realize with passive structures, especially for broadband applications. Here, we experimentally demonstrate a 2D metamaterial composed of coupled sensor-driver unit cells with effective bulk modulus ([Formula: see text]) precisely tunable through adjustments of the amplitude and phase of the transfer function between pairs of sensors and drivers present in each cell. This work adopts the concepts of our previous theoretical study on polarized sources to realize acoustic metamaterials in which the active unit cells are strongly interacting with each other. To demonstrate the capability of our active metamaterial to produce on-demand negative, fractional, and large [Formula: see text], we matched the scattered field from an incident pulse measured in a 2D waveguide with the sound scattered by equivalent continuous materials obtained in numerical simulations. Our approach benefits from being highly scalable, as the unit cells are independently controlled and any number of them can be arranged to form arbitrary geometries without added computational complexity. 
    more » « less
  5. null (Ed.)