skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1943305

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Computing platforms that package multiple types of memory, each with their own performance characteristics, are quickly becoming mainstream. To operate efficiently, heterogeneous memory architectures require new data management solutions that are able to match the needs of each application with an appropriate type of memory. As the primary generators of memory usage, applications create a great deal of information that can be useful for guiding memory management, but the community still lacks tools to collect, organize, and leverage this information effectively. To address this gap, this work introduces a novel software framework that collects and analyzesobject-levelinformation to guide memory tiering. The framework includes tools to monitor the capacity and usage of individual data objects, routines that aggregate and convert this information into tier recommendations for the host platform, and mechanisms to enforce these recommendations according to user-selected policies. Moreover, the developed tools and techniques are fully automatic, work on standard Linux systems, and do not require modification or recompilation of existing software. Using this framework, this study evaluates and compares the impact of a variety of design choices for memory tiering, including different policies for prioritizing objects for the fast memory tier as well as the frequency and timing of migration events. The results, collected on a modern Intel platform with conventional DDR4 SDRAM as well as Intel Optane NVRAM, show that guiding data tiering with object-level information can enable significant performance and efficiency benefits compared with standard hardware- and software-directed data-tiering strategies for a diverse set of memory-intensive workloads. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  2. As scaling of conventional memory devices has stalled, many high-end computing systems have begun to incorporate alternative memory technologies to meet performance goals. Since these technologies present distinct advantages and tradeoffs compared to conventional DDR* SDRAM, such as higher bandwidth with lower capacity or vice versa, they are typically packaged alongside conventional SDRAM in a heterogeneous memory architecture. To utilize the different types of memory efficiently, new data management strategies are needed to match application usage to the best available memory technology. However, current proposals for managing heterogeneous memories are limited, because they either (1) do not consider high-level application behavior when assigning data to different types of memory or (2) require separate program execution (with a representative input) to collect information about how the application uses memory resources. This work presents a new data management toolset to address the limitations of existing approaches for managing complex memories. It extends the application runtime layer with automated monitoring and management routines that assign application data to the best tier of memory based on previous usage, without any need for source code modification or a separate profiling run. It evaluates this approach on a state-of-the-art server platform with both conventional DDR4 SDRAM and non-volatile Intel Optane DC memory, using both memory-intensive high-performance computing (HPC) applications as well as standard benchmarks. Overall, the results show that this approach improves program performance significantly compared to a standard unguided approach across a variety of workloads and system configurations. The HPC applications exhibit the largest benefits, with speedups ranging from 1.4× to 7× in the best cases. Additionally, we show that this approach achieves similar performance as a comparable offline profiling-based approach after a short startup period, without requiring separate program execution or offline analysis steps. 
    more » « less
  3. null (Ed.)
    Many high-performance systems now include different types of memory devices within the same compute platform to meet strict performance and cost constraints. Such heterogeneous memory systems often include an upper-level tier with better performance, but limited capacity, and lower-level tiers with higher capacity, but less bandwidth and longer latencies for reads and writes. To utilize the different memory layers efficiently, current systems rely on hardware-directed, memory -side caching or they provide facilities in the operating system (OS) that allow applications to make their own data-tier assignments. Since these data management options each come with their own set of trade-offs, many systems also include mixed data management configurations that allow applications to employ hardware- and software-directed management simultaneously, but for different portions of their address space. Despite the opportunity to address limitations of stand-alone data management options, such mixed management modes are under-utilized in practice, and have not been evaluated in prior studies of complex memory hardware. In this work, we develop custom program profiling, configurations, and policies to study the potential of mixed data management modes to outperform hardware- or software-based management schemes alone. Our experiments, conducted on an Intel ® Knights Landing platform with high-bandwidth memory, demonstrate that the mixed data management mode achieves the same or better performance than the best stand-alone option for five memory intensive benchmark applications (run separately and in isolation), resulting in an average speedup compared to the best stand-alone policy of over 10 %, on average. 
    more » « less