Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Despite some promising results in federated learning using game-theoretical methods, most existing studies mainly employ a one-level game in either a cooperative or competitive environment, failing to capture the complex dynamics among participants in practice. To address this issue, we propose DualGFL, a novel federated learning framework with a dual-level game in cooperative-competitive environments. DualGFL includes a lower-level hedonic game where clients form coalitions and an upper-level multi-attribute auction game where coalitions bid for training participation.At the lower-level DualGFL, we introduce a new auction-aware utility function and propose a Pareto-optimal partitioning algorithm to find a Pareto-optimal partition based on clients' preference profiles.At the upper-level DualGFL, we formulate a multi-attribute auction game with resource constraints and derive equilibrium bids to maximize coalitions' winning probabilities and profits. A greedy algorithm is proposed to maximize the utility of the central server.Extensive experiments on real-world datasets demonstrate DualGFL's effectiveness in improving both server utility and client utility.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Large quantities of asynchronous event sequence data such as crime records, emergence call logs, and financial transactions are becoming increasingly available from various fields. These event sequences often exhibit both long-term and short-term temporal dependencies. Variations of neural network based temporal point processes have been widely used for modeling such asynchronous event sequences. However, many current architectures including attention based point processes struggle with long event sequences due to computational inefficiency. To tackle the challenge, we propose an efficient sparse transformer Hawkes process (STHP), which has two components. For the first component, a transformer with a novel temporal sparse self-attention mechanism is applied to event sequences with arbitrary intervals, mainly focusing on short-term dependencies. For the second component, a transformer is applied to the time series of aggregated event counts, primarily targeting the extraction of long-term periodic dependencies. Both components complement each other and are fused together to model the conditional intensity function of a point process for future event forecasting. Experiments on real-world datasets show that the proposed STHP outperforms baselines and achieves significant improvement in computational efficiency without sacrificing prediction performance for long sequences.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available