skip to main content


Search for: All records

Award ID contains: 1944323

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The evaporation of droplets on surfaces is a ubiquitous phenomenon essential in nature and industrial applications ranging from thermal management of electronics to self-assembly-based fabrication. In this study, water droplet evaporation on a thin quartz substrate is analyzed using an unsteady two-step arbitrary Lagrangian-Eulerian (ALE) moving mesh model, wherein the evaporation process is simulated during the constant contact radius (CCR) and contact angle (CCA) modes. The numerical model considers mass transfer in the gas domain, flow in the liquid and gas domains, and heat transfer in the solid, liquid, and gas domains. Besides, the model also accounts for interfacial force balance, including thermocapillary stresses, to obtain the instantaneous droplet shape. Experiments involving droplet evaporation on unheated quartz substrates agree with model predictions of contact radius, contact angle, and droplet volume. Model results indicating temperature and velocity distribution across an evaporating water droplet show that the lowest temperatures are at the liquid-gas interface, and a single vortex exists for the predominant duration of the droplet's lifetime. The temperature of the unheated substrate is also significantly reduced due to evaporative cooling. The interfacial evaporation flux distribution, which depends on heat transfer across the droplet and advection in the surrounding medium, shows the highest values near the three-phase contact line. In addition, the model also predicts evaporation dynamics when the substrate is heated and exposed to different advection conditions. Generally, higher evaporation rates result from higher substrate heating and advection rates. However, substrate heating and advection in the surrounding gas have minimal effects on the relative durations of CCR and CCA modes for a given receding contact angle. Specifically, in this case, a 40× increase in substrate heating rate or 7.5× increase in gas velocity can only change these relative durations by 3%. This study also highlights the importance of surface wettability, which affects evaporation dynamics for all the conditions explored by the numerical model. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Evaporation is crucial in many applications. One of the critical parameters affecting evaporation is surface wettability, which is often tailored using coatings and micro- or nanoscale features on the surface. While this approach has advanced many technologies, the ability to control wettability dynamically can add new functionalities and capabilities that were not possible before. This study demonstrates how a self-cleaning superhydrophobic surface with an equilibrium contact angle of 155° can dynamically change to a superhydrophilic surface with a contact angle near 0°, resulting in drastically different evaporation characteristics. Specifically, we find that the evaporation rate and surface temperature reduction due to the resulting cooling are 3 times higher due to the change in surface wettability. This change in wetting behavior is due to the use of an amino-silane [N-(2-aminoethyl)-11-aminoundecyltrimethoxysilane]-functionalized surface, which is altered in the presence of dilute acetic acid. Upon complete evaporation, the surface reverts to superhydrophobic behavior. This reversible behavior is not seen in traditional nonwetting coatings like perfluorodecyltrichlorosilane and lauric acid. This strategy for dynamic control of wettability and evaporation can lead to advancements in many applications ranging from self-assembly-based fabrication processes to oil–water separation and advanced thermal management technologies. 
    more » « less
  3. Markides, C. N. (Ed.)
    Designing air-water systems for industrial applications requires a fundamental understanding of mass accommodation at the liquid-vapor interface, which depends on many factors, including temperature, vapor concentration, and impurities that vary with time. Hence, understanding how mass accommodation changes over a droplet’s lifespan is critical for predicting the performance of applications leveraging evaporation. In this study, experimental data of water droplets on a gold-coated surface evaporating into dry nitrogen is coupled with a computational model to measure the accommodation coefficient at the liquid-vapor interface. We conduct this measurement by combining macroscopic observations with the microscopic kinetic theory of gasses. The experiments utilize a sensitive piezoelectric device to determine the droplet radius with high accuracy and imaging to measure the droplet contact angle. This setup also quantifies the trace amounts of non-volatile impurities in the droplet. For water droplets evaporating in a pure nitrogen stream, the accommodation coefficient directly relates to vapor flux over the droplet’s surface and is affected by the presence of impurities. We obtained a surface-averaged accommodation coefficient close to 0.001 across multiple water droplets evaporating close to room temperature. This quantification can aid in conducting a more accurate analysis of evaporation, which can assist in the improved design of evaporation-based applications. We believe the modeling approach presented in this work, which integrates the kinetic theory of gases to the macroscale flow behavior, can provide a basis for predicting evaporation kinetics in the presence of extremely dry non-condensable gas streams. 
    more » « less
  4. Meyer, J. P. (Ed.)
    Air-water evaporation systems are ubiquitous in industrial applications, including processes such as fuel combustion, inkjet printing, spray cooling, and desalination. In these evaporation-driven systems, a fundamental understanding of mass accommodation at the liquid-vapour interface is critical to predicting and optimizing performance. Interfacial mass accommodation depends on many factors, such as temperature, vapour concentration, non-volatile impurity content, and non-condensable gasses present. Elucidating how these factors interact is essential to designing devices to meet demanding applications. Hence, high precision measurements are needed to quantify accommodation at the liquid-vapour interface accurately. Our previous study has shown surface averaged accommodation coefficients close to 0.001 for pure water droplets throughout evaporation. While it is well established that saline non-volatile impurities reduce the evaporation rate of sessile droplets, the dynamic effect on mass accommodation during the droplet's lifespan is yet to be determined. In this work, we combine experimental and computational techniques to determine the accommodation coefficient over the lifespan of 10-3 to 1 molar potassium chloride-water droplets evaporating on a gold-coated surface into dry nitrogen. This study uses a quartz crystal microbalance as a high-precision contact area sensor. It also determines the non-volatile impurities in the droplet with a precision on the order of nanograms. The computational model couples macroscopic measurements with the microscopic kinetic theory of gasses to quantify hard-to-measure physical quantities. We believe this study will provide a basis for predicting evaporative device performance in conditions where non-volatile impurities are intrinsic to the application. 
    more » « less