skip to main content


This content will become publicly available on August 1, 2024

Title: Investigation of sessile droplet evaporation using a transient two-step moving mesh model
The evaporation of droplets on surfaces is a ubiquitous phenomenon essential in nature and industrial applications ranging from thermal management of electronics to self-assembly-based fabrication. In this study, water droplet evaporation on a thin quartz substrate is analyzed using an unsteady two-step arbitrary Lagrangian-Eulerian (ALE) moving mesh model, wherein the evaporation process is simulated during the constant contact radius (CCR) and contact angle (CCA) modes. The numerical model considers mass transfer in the gas domain, flow in the liquid and gas domains, and heat transfer in the solid, liquid, and gas domains. Besides, the model also accounts for interfacial force balance, including thermocapillary stresses, to obtain the instantaneous droplet shape. Experiments involving droplet evaporation on unheated quartz substrates agree with model predictions of contact radius, contact angle, and droplet volume. Model results indicating temperature and velocity distribution across an evaporating water droplet show that the lowest temperatures are at the liquid-gas interface, and a single vortex exists for the predominant duration of the droplet's lifetime. The temperature of the unheated substrate is also significantly reduced due to evaporative cooling. The interfacial evaporation flux distribution, which depends on heat transfer across the droplet and advection in the surrounding medium, shows the highest values near the three-phase contact line. In addition, the model also predicts evaporation dynamics when the substrate is heated and exposed to different advection conditions. Generally, higher evaporation rates result from higher substrate heating and advection rates. However, substrate heating and advection in the surrounding gas have minimal effects on the relative durations of CCR and CCA modes for a given receding contact angle. Specifically, in this case, a 40× increase in substrate heating rate or 7.5× increase in gas velocity can only change these relative durations by 3%. This study also highlights the importance of surface wettability, which affects evaporation dynamics for all the conditions explored by the numerical model.  more » « less
Award ID(s):
1944323
NSF-PAR ID:
10483124
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Heat and Mass Transfer
Volume:
209
Issue:
C
ISSN:
0017-9310
Page Range / eLocation ID:
124151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT At low surface superheat levels, water droplets deposited on ZnO nanostructured surfaces vaporize primarily by conduction transport of heat from the solid heated surface to the liquid-vapor interface. As the superheat is increased beyond the onset of bub- ble nucleation threshold (ONB), an increasing number of active nucleation sites are observed within the evaporating droplet re- ducing the time required to completely evaporate the droplet. There were two primary objectives of this investigation; first, to determine how system parameters dictate when ONB occurs and how its heat transfer enhancement effect increases with superheat. The second was to develop a physics-inspired model equation for the evaporation time of a droplet on a nanostructured surface which accounts for effects of conduction transport in the liquid layer of the droplet and nucleate boiling. A shape factor model for conduction-dominated vaporiza- tion of the droplet was first constructed. A correction factor was introduced to account for deviation of the measured droplet evaporation times from the conduction-dominated model. The correction factor form was postulated using a modified form of the onset of nucleate boiling parameter used in the well-known model analysis developed by Hsu to predict onset of nucleation and active nucleation site range in a thermal boundary layer as- sociated with forced convection boiling. Droplet footprint radii were experimentally observed to be affected by superheat and an additional term was introduced to account for this phenomenon. A term was also introduced to include correlations for boiling to incorporate system properties. This modeling led to an evaporation time equation contain- ing numerical constants dictated by the idealizations from the physical modeling. To develop an improved empirical model equation, these numerical values were taken to be adjustable constants, and a genetic algorithm was used to determine the ad- justable constant values that best fit a data collection spanning wide variations of droplet size, surface apparent contact angle, and superheat level. The best-fit constants match the data to an absolute fractional error of 26%. The model equation developed in this study provides insight into the interaction between con- duction transport and nucleate boiling effects that can arise in droplet vaporization processes. 
    more » « less
  2. Abstract This paper shows how clusters of radiation-stabilized water droplets levitated in an upward flow of air and water vapor above a heated water surface can be modeled using Spalding's self-similarity theory of heat and mass transfer and Stefan flow. The model describes equilibrium droplet states, including stability conditions, as well as nonequilibrium (quasi-steady) transient evolution. Equilibrium states are shown to exist when Stefan-flow supersaturation, which has a quadratic-like variation with height above the water surface, and radiation-stabilized equilibrium supersaturation, which is nearly constant with height, are equal. The latter can be predicted by a fundamentally derived function of absorbed radiant flux (linear), droplet radius (linear if opaque), continuum thermal conductivity, and thermodynamic properties. In fact, all of the experimentally observed droplet behavior can be predicted using simple analytical results based on quasi-steady droplet energy and continuum transport. Unsteady droplet energy, Knudsen-layer transport, numerical solutions, and curve-fitting of numerical computations, as used previously in modeling this behavior, are not necessary. An interesting reversal of the usual effect of mass transfer on droplet drag in low-Re flow when levitated droplets are irradiated asymmetrically by significant infrared radiation is also postulated, which relates to the relative importance of normal (pressure) and tangential (shear stress) drag. This theory of radiation-augmented droplet evaporation, condensation, and relative motion in a moving gas has application to conditions in clouds, wherein droplets can experience either net radiative heating or cooling and fluctuating updrafts or downdrafts. 
    more » « less
  3. Abstract

    Lubricant‐infused surfaces (SLIPSs/LISs) enable omniphobicity by reducing droplet pinning through creation of an atomically smooth liquid–liquid interface. Although SLIPSs/LISs provide efficient omniphobicity, the need for lubricant adds additional barriers to heat and mass transport and affects three‐phase contact line dynamics. Here, evaporation dynamics of microscale water droplets on SLIPSs/LISs are investigated using steady and transient methods. Although steady results demonstrate that evaporation on SLIPSs/LISs is identical to solid functional surfaces having equivalent apparent contact angle, transient measurements show significant increases in evaporation timescale. To understand the inconsistency, high‐speed optical imaging is used to study the evaporating droplet free interface. Focal plane shift imaging enables the study of cloaking dynamics by tracking satellite microdroplet motion on the cloaked oil layer to characterize critical timescales. By decoupling the effect of substrate material and working fluid via experiments on both microstructured copper oxide and nanostructured boehmite with water and ethanol, it is demonstrated that lubricant cloaking cannot be predicted purely by thermodynamic considerations. Rather, coalescence dynamics, droplet formation, and surface interactions play important roles on establishing cloaking. The outcomes of this work shed light onto the physics of lubricant cloaking, and provide a powerful experimental platform to characterize droplet interfacial phenomena.

     
    more » « less
  4. Markides, C. N. (Ed.)
    Designing air-water systems for industrial applications requires a fundamental understanding of mass accommodation at the liquid-vapor interface, which depends on many factors, including temperature, vapor concentration, and impurities that vary with time. Hence, understanding how mass accommodation changes over a droplet’s lifespan is critical for predicting the performance of applications leveraging evaporation. In this study, experimental data of water droplets on a gold-coated surface evaporating into dry nitrogen is coupled with a computational model to measure the accommodation coefficient at the liquid-vapor interface. We conduct this measurement by combining macroscopic observations with the microscopic kinetic theory of gasses. The experiments utilize a sensitive piezoelectric device to determine the droplet radius with high accuracy and imaging to measure the droplet contact angle. This setup also quantifies the trace amounts of non-volatile impurities in the droplet. For water droplets evaporating in a pure nitrogen stream, the accommodation coefficient directly relates to vapor flux over the droplet’s surface and is affected by the presence of impurities. We obtained a surface-averaged accommodation coefficient close to 0.001 across multiple water droplets evaporating close to room temperature. This quantification can aid in conducting a more accurate analysis of evaporation, which can assist in the improved design of evaporation-based applications. We believe the modeling approach presented in this work, which integrates the kinetic theory of gases to the macroscale flow behavior, can provide a basis for predicting evaporation kinetics in the presence of extremely dry non-condensable gas streams. 
    more » « less
  5. A comprehensive understanding of heat transfer mechanisms and hydrodynamics during droplet impingement on a heated surface and subsequent evaporation is crucial for improving heat transfer models, optimizing surface engineering, and maximizing overall effectiveness. This work showcases findings related to heat transfer mechanisms and simultaneous tracking of the moving contact line (MCL) for subcooled impinging droplets across a range of surface temperatures, utilizing a custom MEMS device, at multiple impact velocities. Experimental results show that heat flux caused by droplet impingement has a weaker dependence on surface temperature than receding MCL heat transfer due to evaporation, which is significantly surface temperature dependent. The measurements also demonstrate that when a droplet impacts a heated surface and evaporates, the process can be divided into two segments based on the effective heat transfer rate: an initial conduction-dominated segment followed by another segment dominated by surface evaporation. For subcooled impinging droplets, the effect of oscillatory motion is found to be negligible, unlike in a superheated regime; hence, heat conduction into the droplet entirely governs the first segment. Results also show that heat flux at the solid-liquid interface of an impinging droplet increases with the rise of either impact velocity or surface temperature. In the subcooled regime, droplets impacting a heated surface have approximately 1.6 times higher vertical heat flux values than gently deposited droplets. Furthermore, this study quantifies the contributions of buoyancy and thermocapillary convection within the droplet to the overall heat transfer. 
    more » « less