Mantle plumes contain heterogenous chemical components and sample variable depths of the mantle, enabling glimpses into the compositional structure of Earth's interior. In this study, we evaluated ocean island basalts (OIB) from nine plume locations to provide a global and systematic assessment of the relationship between
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract f O2and He‐Sr‐Nd‐Pb‐W‐Os isotopic compositions. Ocean island basalts from the Pacific (Austral Islands, Hawaii, Mangaia, Samoa, Pitcairn), Atlantic (Azores, Canary Islands, St. Helena), and Indian Oceans (La Réunion) reveal thatf O2in OIB is heterogeneous both within and among hotspots. Taken together with previous studies, global OIB have elevated and heterogenousf O2(average = +0.5 ∆FMQ; 2SD = 1.5) relative to prior estimates of global mid‐ocean ridge basalts (MORB; average = −0.1 ∆FMQ; 2SD = 0.6), though many individual OIB overlap MORB. Specific mantle components, such as HIMU and enriched mantle 2 (EM2), defined by radiogenic Pb and Sr isotopic compositions compared to other OIB, respectively, have distinctly highf O2based on statistical analysis. Elevatedf O2in OIB samples of these components is associated with higher whole‐rock CaO/Al2O3and olivine CaO content, which may be linked to recycled carbonated oceanic crust. EM1‐type and geochemically depleted OIB are generally not as oxidized, possibly due to limited oxidizing potential of the recycled material in the enriched mantle 1 (EM1) component (e.g., sediment) or lack of recycled materials in geochemically depleted OIB. Despite systematic offset of thef O2among EM1‐, EM2‐, and HIMU‐type OIB, geochemical indices of lithospheric recycling, such as Sr‐Nd‐Pb‐Os isotopic systems, generally do not correlate withf O2. -
Abstract The lower crustal domain of the Ivrea‐Verbano Zone (NW Italy) hosts five ~300‐m‐wide pipe‐like ultramafic intrusions that are metasomatized and exhibit Ni‐Cu‐PGE sulphide mineralization. To better constrain the role of metasomatism in the ore genesis, we studied the best‐preserved pipe at Valmaggia which was emplaced 249 Myrs ago. Phlogopite40Ar/39Ar analyses show that the pipe was infiltrated by metasomatic fluids derived from the subcontinental lithospheric mantle (SCLM) in two pulses at ~208 Ma and ~189 Ma which introduced sulphides into the pipe. Consequently, the pipe repeatedly acted as a preferred path for mass transfer from the SCLM into the lower crust over >60 Myrs (i.e., emplacement to second metasomatic pulse). Uplifted block margins, such as the Ivrea‐Verbano Zone, are potentially important exploration targets for magmatic sulphides. We argue that exploration strategies should focus on structures such as pipes that can focus metasomatic agents during ascent through the lithosphere.
-
Zuun Mod is a porphyry-type Mo-Cu deposit located in the Edren terrane in Southwest Mongolia. The deposit has estimated resources of 218 Mt with an average Mo grade of 0.057% and Cu grade of 0.069%, and significant amounts of Re. The deposit is characterized by multiple pulses of magmatism and exsolution of magmatic ore fluids and associated alteration and mineralization. The timing of these events and the tectonic environment were unconstrained, and the deposit’s origin remains controversial. Based on drill core and field examinations, four lithological units of the Bayanbulag intrusive complex are identified in the deposit area including quartz syenite, quartz monzonite, granodiorite, and granite. The majority of Mo mineralization at Zuun Mod occurs in sheeted and stockwork quartz veins that crosscut units of the Bayanbulag complex as well as disseminations within altered granitoids wherein the mineralized quartz veins occur with potassic and phyllic alteration selvages. Zircon U-Pb age dating for quartz monzonite and granodiorite defined the timing of magmatic events at 305.3 ± 3.6 Ma and 301.8 ± 2.7 Ma, respectively. Molybdenite Re-Os geochronology on grains from a quartz vein with potassic alteration selvage determined the age of Mo mineralization at 297 ± 4.8 Ma. Lithogeochemical data of intrusive units suggest the granitoid rocks show calc-alkaline to high-K calc-alkaline, I-type, and metaluminous to slightly peraluminous affinities that formed in a post-collisional setting and were likely sourced from subduction-modified lithosphere. Lithogeochemical signatures and the tectonic environment classify Zuun Mod into neither Climax nor Endako-types, but as a Mo-rich porphyry Cu deposit.more » « lessFree, publicly-accessible full text available November 1, 2024
-
Fundamental to plate tectonics is the subduction of cold and mechanically strong oceanic plates. While the subducted plates are conventionally regarded to be impermeable to mantle flow and separate the mantle wedge and the subslab region, isolated openings have been proposed. By combining new shear wave splitting measurements with results from geodynamic modeling and recent seismic tomography and geochemical observations, we show that the upper ~200 km of the Cocos slab in northern Central America is intensively fractured. The slab there is strong enough to produce typical arc volcanoes and Benioff Zone earthquakes but allows mantle flow to traverse from the subslab region to the mantle wedge. Upwelling of hot subslab mantle flow through the slab provides a viable explanation for the behind-the-volcanic-front volcanoes that are geochemically distinct from typical arc volcanoes, and for the puzzling high heat flow, high elevation, and low Bouguer gravity anomalies observed in northern Central America.more » « less
-
ABSTRACT The abundance of Ru in chromite has been suggested as an indicator of sulfide liquid saturation in komatiites. The komatiite magma-derived Archean Coobina intrusion is known to be barren in terms of sulfide mineralization. Therefore, the Coobina intrusion can serve as a useful case study to test the applicability of Ru abundance in chromite as a potential indicator for sulfide mineralization, as well as for better understanding the PGE-chromite association in general. The Coobina intrusion is a highly deformed layered intrusion interpreted to be a flared dike. It contains multiple massive chromitite seams that have been recently mined for metallurgical-grade chromite. In this study, 18 samples from chromitite seams throughout this intrusion are investigated for their whole-rock platinum group element (PGE) contents, which are compared to their chromite mineral chemistry (including PGE content), the platinum group mineral (PGM) mineralogy, and Re-Os isotope systematics. Each sample has a similar chromite major and minor element chemistry, but a unique trace element signature, even within the same seam. In general, there are higher concentrations of Ru (>300 ppb) within chromite in the southeast (toward the feeder dike) and lower concentrations (<50 ppb Ru) in the northwest. At a sample scale, Ru in the whole rock and Ru in solid solution in the chromite are inversely correlated, while Ir shows a positive correlation between the whole rock and chromite mineral chemistry, indicating differing partitioning behaviors within the iridium-group PGE (IPGE = Os, Ir, Ru). The inverse correlation between Ru in solid solution within chromite and Ru in whole-rock chromitite suggests that, for seams with high Ru in whole rock, Ru is occurring within separate PGM phases. This is supported by the observation that the samples with high whole-rock Ru also have a high number of visible metal alloy and/or PGM inclusions. Although these inclusions are not necessarily Ru-rich phases, their presence suggests that there is a preference for these samples to form nuggets, which may restrict Ru partitioning into the chromite crystal structure. We suggest that the low Ru values in the Coobina chromite are a result of transient sulfide saturation. The Re-Os isotopic composition of the Coobina chromitite is chondritic [γ187Os(3.189 Ga) = −0.63 ± 0.21] and is consistent with derivation of the Coobina parental magma from the convecting upper mantle source, providing evidence for the mantle origin of the Coobina PGE inventory. If using chromite as a detrital indicator mineral for magmatic sulfide exploration, it must be kept in mind that transient sulfide saturation within chromitite seams may give a false positive signature.more » « less