Zuun Mod is a porphyry-type Mo-Cu deposit located in the Edren terrane in Southwest Mongolia. The deposit has estimated resources of 218 Mt with an average Mo grade of 0.057% and Cu grade of 0.069%, and significant amounts of Re. The deposit is characterized by multiple pulses of magmatism and exsolution of magmatic ore fluids and associated alteration and mineralization. The timing of these events and the tectonic environment were unconstrained, and the deposit’s origin remains controversial. Based on drill core and field examinations, four lithological units of the Bayanbulag intrusive complex are identified in the deposit area including quartz syenite, quartz monzonite, granodiorite, and granite. The majority of Mo mineralization at Zuun Mod occurs in sheeted and stockwork quartz veins that crosscut units of the Bayanbulag complex as well as disseminations within altered granitoids wherein the mineralized quartz veins occur with potassic and phyllic alteration selvages. Zircon U-Pb age dating for quartz monzonite and granodiorite defined the timing of magmatic events at 305.3 ± 3.6 Ma and 301.8 ± 2.7 Ma, respectively. Molybdenite Re-Os geochronology on grains from a quartz vein with potassic alteration selvage determined the age of Mo mineralization at 297 ± 4.8 Ma. Lithogeochemical data of intrusive units suggest the granitoid rocks show calc-alkaline to high-K calc-alkaline, I-type, and metaluminous to slightly peraluminous affinities that formed in a post-collisional setting and were likely sourced from subduction-modified lithosphere. Lithogeochemical signatures and the tectonic environment classify Zuun Mod into neither Climax nor Endako-types, but as a Mo-rich porphyry Cu deposit.
more »
« less
This content will become publicly available on June 1, 2026
Genesis and geochronology of the Bayanteeg Li-mineralized pegmatite in the Idermeg terrane, central Mongolia
We present the first petrographic, lithogeochemical, and geochronological study of the Bayanteeg LCT pegmatite located in Idermeg terrane, central Mongolia, and interpret the findings within the geodynamic setting. The pegmatite extends over 140 m with a width of 1.3 m and unknown depth within Neoproterozoic gneiss. The pegmatite contains plagioclase, quartz, and lepidolite with minor K-feldspar, spodumene, muscovite, and topaz, and accessory amounts of cassiterite, amblygonite, columbite-tantalite, monazite, zircon, apatite, and fluorite. Locally, minor secondary quartz and lepidolite occur interstitially between plagioclase and quartz and along the edges of primary lepidolite, respectively, implying late-stage hydrothermal influence. Lithogeochemical data show that the pegmatite contains 0.3–1.12 wt% Li, 256–1285 ppm Cs, and 59–522 ppm Ta. Monazite U-Th-Pb geochronology yielded an age of 144.9 ± 2.8 Ma while cassiterite yielded a U-Pb age of 134.8 ± 1.4 Ma. Lepidolite yielded 40Ar/39Ar plateau age of 131.25 ± 0.3 Ma. These age results fall during the geodynamic evolution of an intracontinental extension accompanied by the exhumation of metamorphic core complexes and extensive magmatism in the eastern Central Asian Orogenic Belt. These events occurred due to a combination of gravitational collapse resulting from lithospheric delamination and asthenospheric upwelling. The geodynamic setting during the pegmatite emplacement implies abnormally hot conditions, ruling out the possibility of anatectic origin. The pegmatite dike with elevated concentrations of Be, Ga, Rb, Nb, Sn, Cs, Ta, and Tl supports a granitic origin with a hidden parental granite at depth. The fact that the Idermeg terrane contains several LCT pegmatites implies an important exploration target for Li exploration.
more »
« less
- PAR ID:
- 10588548
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Asian Earth Sciences
- Volume:
- 287
- Issue:
- C
- ISSN:
- 1367-9120
- Page Range / eLocation ID:
- 106615
- Subject(s) / Keyword(s):
- LCT pegmatite, Bayanteeg, Monazite, Cassiterite, Lepidolite, Geochronology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metasediments are common constituents of exhumed lower‐to‐mid‐crustal granulite terranes; understanding their emplacement is significant for the assembly and tectonic evolution of deep continental crust. Here, we report a monazite U‐Th‐Pb petrochronological investigation of the Variscan Ivrea‐Verbano Zone (IVZ) (Val Strona di Omegna section)—an archetypal section of lower crust. Monazite Th‐Pb dates from 11 metapelitic samples decrease with structural depth from 310 to 285 Ma for amphibolite‐facies samples to <290 Ma for granulite‐facies samples. These dates exhibit a time‐resolved variation in monazite trace‐element composition, dominated by the effects of plagioclase and garnet partitioning. Monazite growth under prograde to peak metamorphic conditions began as early as 316 ± 2 Ma. Amphibolite‐facies monazite defines a trend consistent with progressively decreasing garnet modal …more » « less
-
Abstract Metasediments are common constituents of exhumed lower‐to‐mid‐crustal granulite terranes; understanding their emplacement is significant for the assembly and tectonic evolution of deep continental crust. Here, we report a monazite U‐Th‐Pb petrochronological investigation of the Variscan Ivrea‐Verbano Zone (IVZ) (Val Strona di Omegna section)—an archetypal section of lower crust. Monazite Th‐Pb dates from 11 metapelitic samples decrease with structural depth from 310 to 285 Ma for amphibolite‐facies samples to <290 Ma for granulite‐facies samples. These dates exhibit a time‐resolved variation in monazite trace‐element composition, dominated by the effects of plagioclase and garnet partitioning. Monazite growth under prograde to peak metamorphic conditions began as early as 316 ± 2 Ma. Amphibolite‐facies monazite defines a trend consistent with progressively decreasing garnet modal abundances during decompression and cooling starting at ∼310 Ma; the timing of the onset of exhumation decreases to ∼290 Ma at the base of the amphibolite‐facies portion of the section. Structurally lower, granulite‐facies monazite equilibrated under garnet‐present pressure‐temperature conditions at <290 Ma, with monazite (re)crystallization persisting until at least ∼260 Ma. Combined with existing detrital zircon U‐Pb dates, the monazite data define a <30 Myr duration between deposition of clastic sediments and their burial and heating, potentially to peak amphibolite‐to‐granulite‐facies conditions. Similarly brief timescales for deposition, burial and prograde metamorphism of lower crustal sediments have been reported from continental magmatic arc terranes—supporting the interpretation that the IVZ represents sediments accreted to the base of a Variscan arc magmatic system >5 Myr prior to the onset of regional extension and mafic magmatism.more » « less
-
Abstract Detailed geochronology from two compositionally distinct generations of dikes and sills intruded into the Alta metamorphic aureole, north‐central Utah, complement previous geochronologic studies from the Alta stock, providing information on the timing of magmatism and the nature of emplacement. Uranium/thorium‐lead dates and chemistry were measured in zircon and monazite from these intrusions and associated reaction selvages in hornfels by split‐stream laser ablation techniques. Concordant zircon U‐Pb dates (n = 532) define a dispersed population of dates that range from ∼38 to 32 Ma. Monazite Th‐Pb dates (n = 888) from granodioritic compositions range from ∼40 to 32 Ma. Evaluation of208Pb/232Th and207Pb/206Pb‐corrected dates with respect to common Pb, U and Th/U values allows rigorous evaluation of the effects of excess206Pb in these young monazites, yielding concordant208Pb/232Th and207Pb/206Pb‐corrected dates in monazites from the granodiorite, consistent with zircon dates from the same thin sections. Leucogranite sills and dikes, which cross‐cut the older granodiorite, have younger monazite dates from ∼33 to 28 Ma. Elevated heavy rare earth element concentrations and trends of larger negative Eu anomalies in the youngest monazites suggest crystallization from an evolved melt. Integration of these new geochronology results and field relationships with prior results from the Alta stock indicate the granodiorite represents the oldest material emplaced in the Alta system. Leucogranite aplite/pegmatite dikes and sills in the inner Alta aureole were emplaced during the final stage of Alta stock construction by injection of evolved water‐rich magmas.more » « less
-
Kuiper, Yvette D; Murphy, J Brendan; Nance, R Damian; Strachan, Rob A; Thompson, Margaret D (Ed.)The Avalon terrane of southeastern New England is a composite terrane, in which various crustal blocks may have different origins and/or tectonic histories. The northern part (west and north of Boston, Massachusetts) correlates well with Avalonian terranes in Newfoundland, Nova Scotia and New Brunswick, Canada, based on rock types and ages, U–Pb detrital zircon signatures of metasedimentary rocks, and Sm–Nd isotope geochemistry data. In the south, fewer data exist, in part because of poorer rock exposure, and the origins and histories of the rocks are less well constrained. We conducted U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis on zircon from seven metasedimentary rock samples from multiple previously interpreted subterranes, in order to constrain their origins. Two samples of Neoproterozoic Plainfield Formation quartzite from the previously interpreted Hope Valley subterrane in the southwestern part of the southeastern New England Avalon terrane and two from the Neoproterozoic Blackstone Group quartzite from the adjacent Esmond-Dedham subterrane to the east have Tonian youngest detrital zircon age populations. One sample of Cambrian North Attleboro Formation quartzite of the Esmond-Dedham subterrane yielded an Ediacaran youngest detrital zircon age population. Detrital zircon populations of all five samples include abundant Mesoproterozoic zircon and smaller Paleoproterozoic and Archean populations, and are similar to those of the northern part of the southeastern New England Avalon terrane and the Avalonian terranes in Canada. These are interpreted as having a Baltican/Amazonian affinity based primarily on published U-Pb and Lu-Hf detrital zircon data. Based on U-Pb detrital zircon data, there is no significant difference between the Hope Valley and Esmond-Dedham subterranes. Detrital zircon of two samples of the Price Neck and Newport Neck formations of the Neoproterozoic Newport Group in southern Rhode Island is characterized by large ~647–643 and ~745–733 Ma age populations and minor zircon up to ~3.1 Ga. This signature is most consistent with a northwest African affinity. The Newport Group may thus represent a subterrane, terrane or other crustal block with a different origin and history than the southeastern New England Avalon terrane to the northwest. The boundary of this Newport Block may be restricted to the boundaries of the Newport Group, or it may extend as far north as Weymouth, MA, as far northwest as (but not including) the North Attleboro Formation quartzite and associated rocks in North Attleboro, MA, and as far west as Warwick, RI, where eastern exposures of the Blackstone Group quartzite exist. The Newport Block may have amalgamated with the Amazonian/Baltican part of the Avalon terrane prior to mid-Paleozoic amalgamation with Laurentia, or have arrived as a separate terrane after accretion of the Avalon terrane. Alternatively, it may have arrived during the formation of Pangea and been stranded after the breakup of Pangea, as has been proposed previously for rocks of the Georges Bank in offshore Massachusetts. If the latter is correct, then the boundary between the Newport Block and the southeastern New England Avalon terrane is the Pangean suture zone.more » « less
An official website of the United States government
