skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1944625

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    3D bioprinting additively assembles bio‐inks to manufacture tissue‐mimicking biological constructs, but with the typical building blocks limited to 1D filaments. Here, it is developed a voxelated bioprinting technique for the digital assembly of spherical particles (DASP), which are effectively 0D voxels—the basic unit of 3D structures. It is shown that DASP enables on‐demand generation, deposition, and assembly of viscoelastic bio‐ink droplets. A two‐parameter diagram is developed to outline the viscoelasticity of bio‐inks required for printing spherical particles of good fidelity. Moreover, a strategy is developed for engineering bio‐inks with independently controllable viscoelasticity and mesh size, two of the most important yet intrinsically coupled physical properties of biomaterials. Using DASP, mechanically robust, multiscale porous scaffolds composed of interconnected yet distinguishable hydrogel particles are created. Finally, it is demonstrated the application of the scaffolds in encapsulating human pancreatic islets for sustained responsive insulin release. Together with the knowledge of bio‐ink design, DASP might be used to engineer highly heterogeneous, yet tightly organized tissue constructs for therapeutic applications.

     
    more » « less
  2. Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into a pseudostratified epithelium. Further, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.

     
    more » « less
    Free, publicly-accessible full text available January 22, 2025
  3. null (Ed.)
    Networks formed by crosslinking bottlebrush polymers are a class of soft materials with stiffnesses matching that of ‘watery’ hydrogels and biological tissues but contain no solvents. Because of their extreme softness, bottlebrush polymer networks are often subject to large deformations. However, it is poorly understood how molecular architecture determines the extensibility of the networks. Using a combination of experimental and theoretical approaches, we discover that the yield strain γ y of the network equals the ratio of the contour length L max to the end-to-end distance R of the bottlebrush between two neighboring crosslinks: γ y = L max / R − 1. This relation suggests two regimes: (1) for stiff bottlebrush polymers, γ y is inversely proportional to the network shear modulus G , γ y ∼ G −1 , which represents a previously unrecognized regime; (2) for flexible bottlebrush polymers, γ y ∼ G −1/2 , which recovers the behavior of conventional polymer networks. Our findings provide a new molecular understanding of the nonlinear mechanics for soft bottlebrush polymer networks. 
    more » « less