Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment in vitro . Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed in vivo during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell–ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue in vitro and highlights the need to incorporate multiple factors that work together synergistically in vivo into models of lung biology of health and disease.
more »
« less
A gel-coated air-liquid-interface culture system with tunable substrate stiffness matching healthy and diseased lung tissues
Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into a pseudostratified epithelium. Further, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.
more »
« less
- Award ID(s):
- 1944625
- PAR ID:
- 10488497
- Publisher / Repository:
- American Physiology Society
- Date Published:
- Journal Name:
- American Journal of Physiology-Lung Cellular and Molecular Physiology
- ISSN:
- 1040-0605
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is a tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work, a methacrylated hyaluronic acid hydrogel platform is leveraged to study stromal cell mechanotransduction. Hydrogels are first formed through thiol‐Michael addition to model normal soft tissue (e.g., lung) stiffness (E ≈ 1 kPa). Secondary cross‐linking via radical photopolymerization of unconsumed methacrylates allows matching of early‐ (E ≈ 6 kPa) and late‐stage fibrotic tissue (E ≈ 50 kPa). Early passage (P1) human bone marrow mesenchymal stromal cells (hMSCs) display increased spreading, myocardin‐related transcription factor‐A (MRTF‐A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF‐A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.more » « less
-
null (Ed.)Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.more » « less
-
Abstract Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.more » « less
-
Pulmonary diseases, such as asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major public health challenge. The disease symptoms, including airway obstruction and inflammation, usually result in changes in airway mechanical properties, such as the caliber and impedance of the airway. To measure such airway properties for disease evaluation and diagnosis purposes, pulmonary function tests (PFT) has been widely adopted. However, most existing PFT systems require expensive and cumbersome hardware that are impossible to be used out of clinic. To allow out-clinic continuous pulmonary disease evaluation, in this paper we present AWARE, a new sensing and AI system that supports accurate and reliable PFT using commodity smartphones. AWARE uses a smartphone to transmit acoustic signals and reconstructs the profile of human airway based on the analysis of reflected acoustic waves captured from the smartphone's microphone. The subject's pulmonary condition is then evaluated by a multi-task learning model that integrates both the airway measurements and the subject's lung function records as the ground truth. Evaluations on 75 human subjects demonstrate that AWARE has the capability to achieve 80% accuracy on distinguishing between humans with healthy pulmonary function and with asthma symptoms.more » « less
An official website of the United States government

