skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1944688

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 17, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available June 16, 2025
  4. Millimeter-wave (mmWave) systems require a large number of antennas, which makes the beam training challenging and time-consuming for conventional phased arrays. Recently, a true-time-delay (TTD) array-based beam training algorithm has been shown as an effective solution to overcome the training overhead in large arrays. In this paper, we present a custombuilt over-the-air (OTA) testbed to study the effects of hardware impairments on the TTD-based beam training and verify its feasibility in a real system. We proposed an orthogonal matching pursuit (OMP) based reconstruction algorithm along with a phase calibration dictionary to combat nonidealities such as strong frequency selectivity and phase misalignment in the received raw IQ signal. Post-processing results showed that with the nonideality effects properly handled, the 3D TTD beam training algorithm can achieve high AOA estimation accuracy. 
    more » « less
    Free, publicly-accessible full text available June 9, 2025
  5. Pavan Hanumolu, Kenichi Okada (Ed.)
  6. Yiran Chen, Marvin Onabajo (Ed.)
  7. null (Ed.)