skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 16, 2025

Title: A 10ns Delay Range 1.5GHz BW True-Time-Delay Array-Based Passive-Active Signal Combiner with Negative-Cap Stabilized RAMP for Fast Precise Localization
Award ID(s):
1955306 1955672 1944688
PAR ID:
10549812
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-5947-3
Page Range / eLocation ID:
227 to 230
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. This paper proposes a novel decentralized signal control algorithm that seeks to improve traffic delay equity, measured as the variation of delay experienced by individual vehicles. The proposed method extends the recently developed delay-based max pressure (MP) algorithm by using the sum of cumulative delay experienced by all vehicles that joined a given link as the metric for weight calculation. Doing so ensures the movements with lower traffic loads have a higher chance of being served as their delay increases. Three existing MP models are used as baseline models with which to compare the proposed algorithm in microscopic simulations of both a single intersection and a grid network. The results indicate that the proposed algorithm can improve the delay equity for various traffic conditions, especially for highly unbalanced traffic flows. Moreover, this improvement in delay equity does not come with a significant increase to average delay experienced by all vehicles. In fact, the average delay from the proposed algorithm is close to—and sometimes even lower than—the baseline models. Therefore, the proposed algorithm can maintain both objectives at the same time. In addition, the performance of the proposed control strategy was tested in a connected vehicle environment. The results show that the proposed algorithm outperforms the other baseline models in both reducing traffic delay and increasing delay equity when the penetration rate is less or equal to 60%, which would not be exceeded in reality in the near future. 
    more » « less