skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydrogel materials can be used to integrate bacteria cells into biohybrid systems. Here, we investigate the use of polyethylene glycol-based hydrogels that employ different Michael-type addition crosslinking chemistries, including thiol-acrylate, thiol-vinyl sulfone, and thiol-maleimide click reactions, for covalent hydrogel network formation and bacteria encapsulation. All crosslinking chemistries generated hydrogels that provided stable encapsulation and culture ofBacillus subtilis; however, significant differences in cell viability and cell morphology after encapsulation were identified. Thiol-acrylate hydrogels provided the highest cell viability and favored encapsulation of single cells, while thiol-maleimide hydrogels had the lowest cell viability and favored encapsulation of larger aggregates. These findings demonstrate the impact of crosslinking strategies for encapsulation of microorganisms into hydrogel networks and suggest that thiol-acrylate chemistries are favorable for many applications. Graphical abstract 
    more » « less
  2. Parvinzadeh Gashti, Mazeyar (Ed.)
    The simple, accurate, and rapid detection of foodborne pathogens is essential for public health. Development of an immunomagnetic separation (IMS) multiplex touchdown PCR (IMS–multiplex TD–PCR) assay for simultaneous detection and distinguishing of C. jejuni and C. coli is reported herein. Polyclonal antibody (pAb) against multiepitope antigen (MEA) was conjugated to ferromagnetic nanoparticles (FMNs) to produce anti-MEA FMNs. Optimal anti-MEA FMNs loading yielded 26.7 μg of immunoglobulin G (IgG) molecules per mg of FMNs with an average size of 72 ± 9  nm, corresponding to an 83% rate of pAb conjugation. Anti-MEA FMNs (20 μg) for IMS captured culturable C. jejuni cells at 3.54 × 10 2 colony-forming unit (CFU)/mL in pure culture, while higher amounts (40 and 60 μg) reduced the recovery. The scanning electron microscope (SEM) analysis revealed the attachment of anti-MEA FMNs to target bacteria, forming aggregated cells and magnetic nanoparticles in ellipse-like shapes. The subsequent multiplex TD–PCR assay simultaneously detected and distinguished C. jejuni and C. coli at 104 CFU/mL in mixed culture and at 103 CFU/mL for each individual species. Furthermore, the limit of detection (LOD) of the IMS–multiplex TD–PCR assay was 104 CFU/g in spiked chicken breast samples. Specificity was 100% for both C. jejuni and C. coli as none of the amplicons were detected in control samples where Campylobacter was absent. This assay is able to detect and distinguish C. jejuni and C. coli simultaneously and is simple, accurate, and rapid with a time to result of 4 h without an enrichment step, making it a promising approach for rapid and culture-free detection of Campylobacter in chicken products. 
    more » « less
  3. This report evaluates the use of on-going, open-ended research problems taken from the instructor’s laboratory and assigned as projects in Transport Phenomena. Projects were structured following a hybrid active learning model and designed to engage student groups by providing them the opportunity to impact research in their department. The impact of these assignments on student comprehension and engagement is evaluated by comparing exam performance of student cohorts with and without projects and through student surveys. 
    more » « less