skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944974

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeling many-body quantum systems is widely regarded as one of the most promising applications for near-term noisy quantum computers. However, in the near term, system size limitation will remain a severe barrier for applications in materials science or strongly correlated systems. A promising avenue of research is to combine many-body physics with machine learning for the classification of distinct phases. We present a workflow that synergizes quantum computing, many-body theory, and quantum machine learning (QML) for studying strongly correlated systems. In particular, it can capture a putative quantum phase transition of the stereotypical strongly correlated system, the Hubbard model. Following the recent proposal of the hybrid quantum-classical algorithm for the two-site dynamical mean-field theory (DMFT), we present a modification that allows the self-consistent solution of the single bath site DMFT. The modified algorithm can be generalized for multiple bath sites. This approach is used to generate a database of zero-temperature wavefunctions of the Hubbard model within the DMFT approximation. We then use a QML algorithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-to-Mott insulator phase transition. We train a recently proposed quantum convolutional neural network (QCNN) and then utilize the QCNN as a quantum classifier to capture the phase transition region. This work provides a recipe for application to other phase transitions in strongly correlated systems and represents an exciting application of small-scale quantum devices realizable with near-term technology. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We develop a real space cluster extension of the typical medium theory (cluster-TMT) to study Anderson localization. By construction, the cluster-TMT approach is formally equivalent to the real space cluster extension of the dynamical mean field theory. Applying the developed method to the 3D Anderson model with a box disorder distribution, we demonstrate that cluster-TMT successfully captures the localization phenomena in all disorder regimes. As a function of the cluster size, our method obtains the correct critical disorder strength for the Anderson localization in 3D, and systematically recovers the re-entrance behavior of the mobility edge. From a general perspective, our developed methodology offers the potential to study Anderson localization at surfaces within quantum embedding theory. This opens the door to studying the interplay between topology and Anderson localization from first principles. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)