skip to main content


Title: Real Space Quantum Cluster Formulation for the Typical Medium Theory of Anderson Localization
We develop a real space cluster extension of the typical medium theory (cluster-TMT) to study Anderson localization. By construction, the cluster-TMT approach is formally equivalent to the real space cluster extension of the dynamical mean field theory. Applying the developed method to the 3D Anderson model with a box disorder distribution, we demonstrate that cluster-TMT successfully captures the localization phenomena in all disorder regimes. As a function of the cluster size, our method obtains the correct critical disorder strength for the Anderson localization in 3D, and systematically recovers the re-entrance behavior of the mobility edge. From a general perspective, our developed methodology offers the potential to study Anderson localization at surfaces within quantum embedding theory. This opens the door to studying the interplay between topology and Anderson localization from first principles.  more » « less
Award ID(s):
1944974 1931367 1931445 1728457
NSF-PAR ID:
10323351
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
11
Issue:
11
ISSN:
2073-4352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Great progress has been made in recent years towards understanding the properties of disordered electronic systems. In part, this is made possible by recent advances in quantum effective medium methods which enable the study of disorder and electron-electronic interactions on equal footing. They include dynamical mean-field theory and the Coherent Potential Approximation, and their cluster extension, the dynamical cluster approximation. Despite their successes, these methods do not enable the first-principles study of the strongly disordered regime, including the effects of electronic localization. The main focus of this review is the recently developed typical medium dynamical cluster approximation for disordered electronic systems. This method has been constructed to capture disorder-induced localization and is based on a mapping of a lattice onto a quantum cluster embedded in an effective typical medium, which is determined self-consistently. Unlike the average effective medium-based methods mentioned above, typical medium-based methods properly capture the states localized by disorder. The typical medium dynamical cluster approximation not only provides the proper order parameter for Anderson localized states, but it can also incorporate the full complexity of Density-Functional Theory (DFT)-derived potentials into the analysis, including the effect of multiple bands, non-local disorder, and electron-electron interactions. After a brief historical review of other numerical methods for disordered systems, we discuss coarse-graining as a unifying principle for the development of translationally invariant quantum cluster methods. Together, the Coherent Potential Approximation, the Dynamical Mean-Field Theory and the Dynamical Cluster Approximation may be viewed as a single class of approximations with a much-needed small parameter of the inverse cluster size which may be used to control the approximation. We then present an overview of various recent applications of the typical medium dynamical cluster approximation to a variety of models and systems, including single and multiband Anderson model, and models with local and off-diagonal disorder. We then present the application of the method to realistic systems in the framework of the DFT and demonstrate that the resulting method can provide a systematic first-principles method validated by experiment and capable of making experimentally relevant predictions. We also discuss the application of the typical medium dynamical cluster approximation to systems with disorder and electron-electron interactions. Most significantly, we show that in the limits of strong disorder and weak interactions treated perturbatively, that the phenomena of 3D localization, including a mobility edge, remains intact. However, the metal-insulator transition is pushed to larger disorder values by the local interactions. We also study the limits of strong disorder and strong interactions capable of producing moment formation and screening, with a non-perturbative local approximation. Here, we find that the Anderson localization quantum phase transition is accompanied by a quantum-critical fan in the energy-disorder phase diagram. 
    more » « less
  2. We study interacting fermions in one dimension subject to random, uncorrelated onsite disorder, a paradigmatic model of many‐body localization (MBL). This model realizes an interaction‐driven quantum phase transition between an ergodic and a many‐body localized phase, with the transition occurring in the many‐body eigenstates. We propose a single‐particle framework to characterize these phases by the eigenstates (the natural orbitals) and the eigenvalues (the occupation spectrum) of the one‐particle density matrix (OPDM) in individual many‐body eigenstates. As a main result, we find that the natural orbitals are localized in the MBL phase, but delocalized in the ergodic phase. This qualitative change in these single‐particle states is a many‐body effect, since without interactions the single‐particle energy eigenstates are all localized. The occupation spectrum in the ergodic phase is thermal in agreement with the eigenstate thermalization hypothesis, while in the MBL phase the occupations preserve a discontinuity at an emergent Fermi edge. This suggests that the MBL eigenstates are weakly dressed Slater determinants, with the eigenstates of the underlying Anderson problem as reference states. We discuss the statistical properties of the natural orbitals and of the occupation spectrum in the two phases and as the transition is approached. Our results are consistent with the existing picture of emergent integrability and localized integrals of motion, or quasiparticles, in the MBL phase. We emphasize the close analogy of the MBL phase to a zero‐temperature Fermi liquid: in the studied model, the MBL phase is adiabatically connected to the Anderson insulator and the occupation‐spectrum discontinuity directly indicates the presence of quasiparticles localized in real space. Finally, we show that the same picture emerges for interacting fermions in the presence of an experimentally‐relevant bichromatic lattice and thereby demonstrate that our findings are not limited to a specific model.image

     
    more » « less
  3. Telecystoscopy can lower the barrier to access critical urologic diagnostics for patients around the world. A major challenge for robotic control of flexible cystoscopes and intuitive teleoperation is the pose estimation of the scope tip. We propose a novel real-time camera localization method using video recordings from a prior cystoscopy and 3D bladder reconstruction to estimate cystoscope pose within the bladder during follow-up telecystoscopy. We map prior video frames into a low-dimensional space as a dictionary so that a new image can be likewise mapped to efficiently retrieve its nearest neighbor among the dictionary images. The cystoscope pose is then estimated by the correspondence among the new image, its nearest dictionary image, and the prior model from 3D reconstruction. We demonstrate performance of our methods using bladder phantoms with varying fidelity and a servo-controlled cystoscope to simulate the use case of bladder surveillance through telecystoscopy. The servo-controlled cystoscope with 3 degrees of freedom (angulation, roll, and insertion axes) was developed for collecting cystoscope videos from bladder phantoms. Cystoscope videos were acquired in a 2.5D bladder phantom (bladder-shape cross-section plus height) with a panorama of a urothelium attached to the inner surface. Scans of the 2.5D phantom were performed in separate arc trajectories each of which is generated by actuation on the angulation with a fixed roll and insertion length. We further included variance in moving speed, imaging distance and existence of bladder tumors. Cystoscope videos were also acquired in a water-filled 3D silicone bladder phantom with hand-painted vasculature. Scans of the 3D phantom were performed in separate circle trajectories each of which is generated by actuation on the roll axis under a fixed angulation and insertion length. These videos were used to create 3D reconstructions, dictionary sets, and test data sets for evaluating the computational efficiency and accuracy of our proposed method in comparison with a method based on global Scale-Invariant Feature Transform (SIFT) features, named SIFT-only. Our method can retrieve the nearest dictionary image for 94–100% of test frames in under 55[Formula: see text]ms per image, whereas the SIFT-only method can only find the image match for 56–100% of test frames in 6000–40000[Formula: see text]ms per image depending on size of the dictionary set and richness of SIFT features in the images. Our method, with a speed of around 20 Hz for the retrieval stage, is a promising tool for real-time image-based scope localization in robotic cystoscopy when prior cystoscopy images are available. 
    more » « less
  4. Abstract From quasicrystalline alloys to twisted bilayer graphene, the study of material properties arising from quasiperiodic structure has driven advances in theory and applied science. Here we introduce a class of two-phase composites, structured by deterministic Moiré patterns, and we find that these composites display exotic behavior in their bulk electrical, magnetic, diffusive, thermal, and optical properties. With a slight change in the twist angle, the microstructure goes from periodic to quasiperiodic, and the transport properties switch from those of ordered to randomly disordered materials. This transition is apparent when we distill the relationship between classical transport coefficients and microgeometry into the spectral properties of an operator analogous to the Hamiltonian in quantum physics. We observe this order to disorder transition in terms of band gaps, field localization, and mobility edges analogous to Anderson transitions — even though there are no wave scattering or interference effects at play here. 
    more » « less
  5. Abstract

    We revisit the Haake–Lewenstein–Wilkens approach to Edwards–Anderson (EA) model of Ising spin glass (SG) (Haakeet al1985Phys. Rev. Lett.552606). This approach consists in evaluation and analysis of the probability distribution of configurations of two replicas of the system, averaged over quenched disorder. This probability distribution generates squares of thermal copies of spin variables from the two copies of the systems, averaged over disorder, that is the terms that enter the standard definition of the original EA order parameter,qEA. We use saddle point/steepest descent (SPSD) method to calculate the average of the Gaussian disorder in higher dimensions. This approximate result suggest thatqEA>0at0<T<Tcin 3D and 4D. The case of 2D seems to be a little more subtle, since in the present approach energy increase for a domain wall competes with boundary/edge effects more strongly in 2D; still our approach predicts SG order at sufficiently low temperature. We speculate, how these predictions confirm/contradict widely spread opinions that: (i) There exist only one (up to the spin flip) ground state in EA model in 2D, 3D and 4D; (ii) there is (no) SG transition in 3D and 4D (2D). This paper is dedicated to the memories of Fritz Haake and Marek Cieplak.

     
    more » « less