skip to main content


Search for: All records

Award ID contains: 1945148

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2025
  2. Radio frequency (RF) magnetometers based on nitrogen vacancy centers in diamond are predicted to offer femtotesla sensitivity, but previous experiments were limited to the picotesla level. We demonstrate a femtotesla RF magnetometer using a diamond membrane inserted between ferrite flux concentrators. The device provides ~300-fold amplitude enhancement for RF magnetic fields from 70 kHz to 3.6 MHz, and the sensitivity reaches ~70 fT√s at 0.35 MHz. The sensor detected the 3.6-MHz nuclear quadrupole resonance (NQR) of room-temperature sodium nitrite powder. The sensor’s recovery time after an RF pulse is ~35 μs, limited by the excitation coil’s ring-down time. The sodium-nitrite NQR frequency shifts with temperature as −1.00±0.02 kHz/K, the magnetization dephasing time isT2*=887±51 μs, and multipulse sequences extend the signal lifetime to 332±23 ms, all consistent with coil-based studies. Our results expand the sensitivity frontier of diamond magnetometers to the femtotesla range, with potential applications in security, medical imaging, and materials science.

     
    more » « less
    Free, publicly-accessible full text available June 16, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. We demonstrate the operation of a rotation sensor based on the nitrogen-14 ( 14 N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14 N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14 N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/ s (13 mHz/ Hz ), with a bias stability of 0.4 °/s (1.1 mHz). 
    more » « less