Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stewart, Frank J (Ed.)ABSTRACT Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria.more » « less
-
Stewart, Frank J (Ed.)ABSTRACT Here, we present the draft genome sequence of strain LSUCC0117, a representative of the abundant aquatic BAL58 Betaproteobacteria group which we isolated from a coastal site in the northern Gulf of Mexico. The genome is estimated at over 99% complete, with a genome size of 2,687,225 bp.more » « less
-
Abstract The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.more » « less
-
The University of Southern California’s (USC) Joint Educational Project’s STEM Education Programs hosted a three-day summer workshop focused on marine microbiology and coastal deoxygenation for high school educators. To increase ocean literacy in high school students from Title I schools, topical marine science research was translated into four lesson plans appropriate for classrooms that teach biology and environmental science. The lesson plans focus on how marine microbes affect and are affected by the dissolved oxygen content of seawater but covered diverse oceanography topics including microbial ecology, nutrient cycling, physical ocean dynamics, and climate change. This education framework was designed to promote and facilitate hands on discovery-based learning and making observations about the natural world. The workshop and lesson plan development were executed in partnership with faculty and graduate students researching marine microbes and oceanography from USC’s Marine and Environmental Biology department to provide scientific expertise on the subject matter. At the workshop, educators were guided through each lesson plan and given classroom sets of materials to complete each of the experiments in their own classrooms. Educators also had the opportunity to experience the academic research process at both USC and the Wrigley Institute of Environmental Studies on Catalina Island, California. Teachers valued this interactive experience to learn from professional scientists and STEM educators. They left the workshop equipped with the knowledge and confidence to teach these marine microbiology and biogeochemistry concepts in their classrooms.more » « less
-
Makhalanyane, Thulani P. (Ed.)One goal of marine microbiologists is to uncover the roles various microorganisms are playing in biogeochemical cycles. Success in this endeavor relies on differentiating groups of microbes and circumscribing their relationships. An early-diverging group (subclade V) of the most abundant bacterioplankton, SAR11, has recently been proposed as a separate lineage that does not share a most recent common ancestor. But beyond phylogenetics, little has been done to evaluate how these organisms compare with SAR11. Our work leverages dozens of new genomes to demonstrate the similarities and differences between subclade V and SAR11. In our analysis, we also establish that subclade V is synonymous with a group of bacteria established from 16S rRNA gene sequences, AEGEAN-169. Subclade V/AEGEAN-169 has clear metabolic distinctions from SAR11 and their shared traits point to remarkable convergent evolution if they do not share a most recent common ancestor.more » « less
-
Newton, Irene L. (Ed.)ABSTRACT A common method for quantifying microbial abundances in situ is through metagenomic read recruitment to genomes and normalizing read counts as reads per kilobase (of genome) per million (bases of recruited sequences) (RPKM). We created RRAP (RPKM Recruitment Analysis Pipeline), a wrapper that automates this process using Bowtie2 and SAMtools.more » « less
-
Marvasi, Massimiliano (Ed.)ABSTRACT Bacterial characterization is an important aspect of microbiology that includes experimentally determining growth rates, environmental conditions conducive to growth, and the types of energy sources microorganisms can use. Researchers use this information to help understand and predict an organism’s ecological distribution and environmental functions. Microbiology students generally conduct bacterial characterization experiments in their coursework; however, they are frequently restricted to model organisms without ecological relevance and already well-studied physiologies. We present a course-based undergraduate research experience (CURE) curriculum to involve students in characterization of previously untested, ecologically relevant aquatic free-living bacteria (bacterioplankton) cultures to identify the usable nutrient substrates, as well as the temperature and salinity ranges conducive to growth. Students use these results to connect their organism’s physiology to the isolation environment. This curriculum also exposes students to advanced microbiology methods such as flow cytometry for measuring cell concentrations, teaches them to use the programming language R for data plotting, and emphasizes scientific communication through writing, speaking, poster creation/presentation, and social media. This CURE is an attractive introduction to scientific research and was successfully tested with 187 students in three semesters at two different universities. Students generated reproducible growth data for multiple strains across these different deployments, demonstrating the utility of the curriculum for research support.more » « less
-
Poretsky, Rachel (Ed.)ABSTRACT Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria . Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus (“ Candidatus Halomarinus”), sister to Litoricola , comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some “ Ca. Halomarinus” organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria , has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world’s oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly “heterotrophic” taxa.more » « less
-
Newton, Irene L. (Ed.)ABSTRACT Here, we introduce a Python-based repository, sparse-growth-curve, a software package designed for parsing cellular growth curves with low temporal resolution. The repository uses cell density and time data as the input, automatically separates different growth phases, calculates the exponential growth rates, and produces multiple graphs to aid in interpretation.more » « less