skip to main content


Search for: All records

Award ID contains: 1945615

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This is the first part of the four-paper sequence, which establishes the Threshold Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equation in the (4 + 1)-dimensional Minkowski space-time. The primary subject of this paper, however, is another PDE, namely the energy critical Yang-Mills heat flow on the 4-dimensional Euclidean space. Our first goal is to establish sharp criteria for global existence and asymptotic convergence to a flat connection for this system in H1, including the Dichotomy Theorem (i.e., either the above properties hold or a harmonic Yang-Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial energy is less than twice that of the ground state, then the above properties hold). Our second goal is to use the Yang-Mills heat flow in order to define the caloric gauge, which will play a major role in the analysis of the hyperbolic Yang-Mills equation in the subsequent papers. 
    more » « less