Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To walk over constrained environments, bipedal robots must meet concise control objectives of speed and foot placement. The decisions made at the current step need to factor in their effects over a time horizon. Such step-to-step control is formulated as a two-point boundary value problem (2-BVP). As the dimensionality of the biped increases, it becomes increasingly difficult to solve this 2-BVP in real-time. The common method to use a simple linearized model for real-time planning followed by mapping on the high dimensional model cannot capture the nonlinearities and leads to potentially poor performance for fast walking speeds. In this paper, we present a framework for real-time control based on using partial feedback linearization (PFL) for model reduction, followed by a data-driven approach to find a quadratic polynomial model for the 2-BVP. This simple step-tostep model along with constraints is then used to formulate and solve a quadratically constrained quadratic program to generate real-time control commands. We demonstrate the efficacy of the approach in simulation on a 5-link biped following a reference velocity profile and on a terrain with ditches.more » « less
-
The popular approach of assuming a control policy and then finding the largest region of attraction (ROA) (e.g., sum-of-squares optimization) may lead to conservative estimates of the ROA, especially for highly nonlinear systems. We present a sampling-based approach that starts by assuming a ROA and then fi nds the necessary control policy by performing trajectory optimization on sampled initial conditions. Our method works with black-box models, produces a relatively large ROA, and ensures exponential convergence of the initial conditions to the periodic motion. We demonstrate the approach on a model of hopping and include extensive verification and robustness checks.more » « less
-
Legged robots with point or small feet are nearly impossible to control instantaneously but are controllable over the time scale of one or more steps, also known as step-to-step control. Previous approaches achieve step-to-step control using optimization by (1) using the exact model obtained by integrating the equations of motion, or (2) using a linear approximation of the step-to-step dynamics. The former provides a large region of stability at the expense of a high computational cost while the latter is computationally cheap but offers limited region of stability. Our method combines the advantages of both. First, we generate input/output data by simulating a single step. Second, the input/output data is curve fitted using a regression model to get a closed-form approximation of the step-to-step dynamics. We do this model identification offline. Next, we use the regression model for online optimal control. Here, using the spring-load inverted pendulum model of hopping, we show that both parametric (polynomial and neural network) and non-parametric (gaussian process regression) approximations can adequately model the step-to-step dynamics. We then show this approach can stabilize a wide range of initial conditions fast enough to enable real-time control. Our results suggest that closed-form approximation of the step-to-step dynamics provides a simple accurate model for fast optimal control of legged robots.more » « less