skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximation Of The Step-to-step Dynamics Enables Computationally Efficient And Fast Optimal Control Of Legged Robots
Legged robots with point or small feet are nearly impossible to control instantaneously but are controllable over the time scale of one or more steps, also known as step-to-step control. Previous approaches achieve step-to-step control using optimization by (1) using the exact model obtained by integrating the equations of motion, or (2) using a linear approximation of the step-to-step dynamics. The former provides a large region of stability at the expense of a high computational cost while the latter is computationally cheap but offers limited region of stability. Our method combines the advantages of both. First, we generate input/output data by simulating a single step. Second, the input/output data is curve fitted using a regression model to get a closed-form approximation of the step-to-step dynamics. We do this model identification offline. Next, we use the regression model for online optimal control. Here, using the spring-load inverted pendulum model of hopping, we show that both parametric (polynomial and neural network) and non-parametric (gaussian process regression) approximations can adequately model the step-to-step dynamics. We then show this approach can stabilize a wide range of initial conditions fast enough to enable real-time control. Our results suggest that closed-form approximation of the step-to-step dynamics provides a simple accurate model for fast optimal control of legged robots.  more » « less
Award ID(s):
1946282
PAR ID:
10182619
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASME-International Design Engineering & Technical Conference, Virtual Conference, Aug 17--19, 2020.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Real-time adaptation is imperative to the control of robots operating in complex, dynamic environments. Adaptive control laws can endow even nonlinear systems with good trajectory tracking performance, provided that any uncertain dynamics terms are linearly parameterizable with known nonlinear features. However, it is often difficult to specify such features a priori, such as for aerodynamic disturbances on rotorcraft or interaction forces between a manipulator arm and various objects. In this paper, we turn to data-driven modeling with neural networks to learn, offline from past data, an adaptive controller with an internal parametric model of these nonlinear features. Our key insight is that we can better prepare the controller for deployment with control-oriented meta-learning of features in closed-loop simulation, rather than regression-oriented meta-learning of features to fit input-output data. Specifically, we meta-learn the adaptive controller with closed-loop tracking simulation as the base-learner and the average tracking error as the meta-objective. With a nonlinear planar rotorcraft subject to wind, we demonstrate that our adaptive controller outperforms other controllers trained with regression-oriented meta-learning when deployed in closed-loop for trajectory tracking control. 
    more » « less
  2. A general problem encompassing output regulation and pattern generation can be formulated as the design of controllers to achieve convergence to a persistent trajectory within the zero dynamics on which an output vanishes. We develop an optimal control theory for such design by adding the requirement to minimize the H2 norm of a closed-loop transfer function. Within the framework of eigenstructure assignment, the optimal control is proven identical to the standard H2 control in form. However, the solution to the Riccati equation for the linear quadratic regulator is not stabilizing. Instead it partially stabilizes the closed-loop dynamics excluding the zero dynamics. The optimal control architecture is shown to have the feedback of the deviation from the subspace of the zero dynamics and the feedforward of the control input to remain in the subspace. 
    more » « less
  3. The complexity associated with the control of highly-articulated legged robots scales quickly as the number of joints increases. Traditional approaches to the control of these robots are often impractical for many real-time applications. This work thus presents a novel sampling-based planning ap- proach for highly-articulated robots that utilizes a probabilistic graphical model (PGM) to infer in real-time how to optimally modify goal-driven, locomotive behaviors for use in closed-loop control. Locomotive behaviors are quantified in terms of the parameters associated with a network of neural oscillators, or rather a central pattern generator (CPG). For the first time, we show that the PGM can be used to optimally modulate different behaviors in real-time (i.e., to select of optimal choice of parameter values across the CPG model) in response to changes both in the local environment and in the desired control signal. The PGM is trained offline using a library of optimal behaviors that are generated using a gradient-free optimization framework. 
    more » « less
  4. Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots. 
    more » « less
  5. The complex dynamics of agile robotic legged locomotion requires motion planning to intelligently adjust footstep locations. Often, bipedal footstep and motion planning use mathematically simple models such as the linear inverted pendulum, instead of dynamically-rich models that do not have closed-form solutions. We propose a real-time optimization method to plan for dynamical models that do not have closed form solutions and experience irrecoverable failure. Our method uses a data-driven approximation of the step-to-step dynamics and of a failure margin function. This failure margin function is an oriented distance function in state-action space where it describes the signed distance to success or failure. The motion planning problem is formed as a nonlinear program with constraints that enforce the approximated forward dynamics and the validity of state-action pairs. For illustration, this method is applied to create a planner for an actuated spring-loaded inverted pendulum model. In an ablation study, the failure margin constraints decreased the number of invalid solutions by between 24 and 47 percentage points across different objectives and horizon lengths. While we demonstrate the method on a canonical model of locomotion, we also discuss how this can be applied to data-driven models and full-order robot models. 
    more » « less