skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1948921

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract River plumes often interact with capes in the coastal ocean, impacting local hydrodynamics and the transport of scalars. However, our current knowledge on how capes affect river plume separation, mixing, and retention is limited. Here, we conducted idealized numerical experiments with Gaussian‐shaped capes of varying curvature radii, constant river discharge, a sloping bottom, and scenarios with and without downwelling winds. We found that river plumes separate from capes when the Rossby number is above 1, a criterion that had not been tested for plume separation. This Rossby number is based on the plume velocity, the Coriolis factor, and the radius of curvature of the cape. Freshwater accumulation is greatest at the lee of narrow (i.e., pointy) capes under calm winds, but decreases significantly in downwelling winds or around broader capes. 
    more » « less
  2. As brackish turbid waters exit San Francisco Bay, one of the largest estuaries in the U.S. West Coast, they form the San Francisco Bay Plume (SFBP), which spreads offshore and influences the Gulf of the Farallones (GoF), an ecologically significant region in the California Current System that is also home to three National Marine Sanctuaries. This paper provides the first observationally based investigation of the spatio-temporal variability of the SFBP, using a plume tracking algorithm applied to more than two decades (2002-2023) of ocean color data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard satellites Aqua and Terra. The turbid SFBP spreads radially, extending 10-20 km offshore around 50% of the time, and during extreme discharge events (<1% of the time), the plume can reach nearly 60 km offshore to the shelf break. The greatest variability in frequency of plume occurrence was observed 10-20 km offshore and it was largely explained by the seasonal cycle (80% of total variance), linked primarily to seasonal changes in river discharge. Largest plume areas (determined by summing up all pixel areas weighted by their respective fraction of plume occurrence) were observed during winter and smallest during summer, occupying on average 24% and 1.5% of GoF area, respectively. Beyond 20-30 km offshore, variability in frequency of plume occurrence was dominated by the intraseasonal band (50-80% of total variance), attributed to plume response to synoptic wind-forcing and/or filaments and eddies, while the interannual band played a secondary role in the plume variability (<20% of total variance). Finally, a multivariable linear regression model of the turbid SFBP area was created to explore the potential predictability of the plume’s influence in the GoF. The model included the annual and semi-annual cycles and discharge anomalies (deseasoned and detrended), and despite its simplicity, it explained over 78% of total variance of the turbid SFBP area. Therefore, it could be a useful tool for scientists and stakeholders to better understand how management actions on freshwater supply can have consequences offshore beyond the Golden Gate and help guide future management decisions in this ecologically important region. 
    more » « less
    Free, publicly-accessible full text available August 8, 2026
  3. Shipboard and moored observations were conducted during Spring (Mar-Apr) 2022 in the Gulf of the Farallones, California, to study the interaction of the San Francisco Bay Plume with Pt. Reyes, a prominent cape. Two moorings were deployed, a “south mooring” and a “north mooring”, in the vicinity of Pt. Reyes, along the ~18m isobath. Both mooring contained a bottom mounted Acoustic Doppler Current Profiler, and conductivity-temperature probes (CTs) at 1 and 5 meters, and an additional CT at the south moooring at ~1 meter above the bottom. Shipboard transects using a Sea Science Acrobat, a towed platform equipped with a CTD, were conducted during the 13, 14 and 25 of March. All the metadata information necessary for the interpretation of the model outputs (dimensions, units, etc) is included inside the NetCDF files. The NetCDF files follow the CF conventions and can be opened with various software that are open source and freely available over the Internet. 
    more » « less