skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1949963

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We show that barotropic flows of a perfect, charged, classical fluid exhibit an anomaly analogous to the chiral anomaly known in quantum field theories with Dirac fermions. A prominent effect of the chiral anomaly is the transport electric current in the fluid at equilibrium with the chiral reservoir. We find that it is also a property of celebrated Beltrami flows — stationary solutions of the Euler equation with an extensive helicity. 
    more » « less
  2. Abstract We introduce and study a model of a logarithmic gas with inverse temperature β on an arbitrary smooth closed contour in the plane. This model generalizes Dyson’s gas (the β -ensemble) on the unit circle. We compute the non-vanishing terms of the large N expansion of the free energy ( N is the number of particles) by iterating the ‘loop equation’ that is the Ward identity with respect to reparametrizations and dilatation of the contour. We show that the main contribution to the free energy is expressed through the spectral determinant of the Neumann jump operator associated with the contour, or equivalently through the Fredholm determinant of the Neumann–Poincare (double layer) operator. This result connects the statistical mechanics of the Dyson gas to the spectral geometry of the interior and exterior domains of the supporting contour. 
    more » « less