skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dyson gas on a curved contour
Abstract We introduce and study a model of a logarithmic gas with inverse temperature β on an arbitrary smooth closed contour in the plane. This model generalizes Dyson’s gas (the β -ensemble) on the unit circle. We compute the non-vanishing terms of the large N expansion of the free energy ( N is the number of particles) by iterating the ‘loop equation’ that is the Ward identity with respect to reparametrizations and dilatation of the contour. We show that the main contribution to the free energy is expressed through the spectral determinant of the Neumann jump operator associated with the contour, or equivalently through the Fredholm determinant of the Neumann–Poincare (double layer) operator. This result connects the statistical mechanics of the Dyson gas to the spectral geometry of the interior and exterior domains of the supporting contour.  more » « less
Award ID(s):
1949963
PAR ID:
10335022
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
55
Issue:
16
ISSN:
1751-8113
Page Range / eLocation ID:
165202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract The 1/2-BPS Wilson loop in $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory is an important and well-studied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in the fundamental representation. In this paper, we extend such analyses to Wilson loops in the large-rank symmetric and antisymmetric representations, which correspond to probe D3 and D5 branes with AdS 2 × S 2 and AdS 2 × S 4 worldvolume geometries, ending at the AdS 5 boundary along a one-dimensional contour. We first compute the correlation functions of protected scalar insertions from supersymmetric localization, and obtain a representation in terms of multiple integrals that are similar to the eigenvalue integrals of the random matrix, but with important differences. Using ideas from the Fermi Gas formalism and the Clustering method, we evaluate their large N limit exactly as a function of the ’t Hooft coupling. The results are given by simple integrals of polynomials that resemble the Q -functions of the Quantum Spectral Curve, with integration measures depending on the number of insertions. Next, we study the correlation functions of fluctuations on the probe D3 and D5 branes in AdS. We compute a selection of three- and four-point functions from perturbation theory on the D-branes, and show that they agree with the results of localization when restricted to supersymmetric kinematics. We also explain how the difference of the internal geometries of the D3 and D5 branes manifests itself in the localization computation. 
    more » « less
  2. This paper analyzes the generalization error of two-layer neural networks for computing the ground state of the Schrödinger operator on a d d -dimensional hypercube with Neumann boundary condition. We prove that the convergence rate of the generalization error is independent of dimension d d , under the a priori assumption that the ground state lies in a spectral Barron space. We verify such assumption by proving a new regularity estimate for the ground state in the spectral Barron space. The latter is achieved by a fixed point argument based on the Krein-Rutman theorem. 
    more » « less
  3. We study the “geometric Ricci curvature lower bound”, introduced previously by Junge, Li and LaRacuente, for a variety of examples including group von Neumann algebras, free orthogonal quantum groups [Formula: see text], [Formula: see text]-deformed Gaussian algebras and quantum tori. In particular, we show that Laplace operator on [Formula: see text] admits a factorization through the Laplace–Beltrami operator on the classical orthogonal group, which establishes the first connection between these two operators. Based on a non-negative curvature condition, we obtain the completely bounded version of the modified log-Sobolev inequalities for the corresponding quantum Markov semigroups on the examples mentioned above. We also prove that the “geometric Ricci curvature lower bound” is stable under tensor products and amalgamated free products. As an application, we obtain a sharp Ricci curvature lower bound for word-length semigroups on free group factors. 
    more » « less
  4. This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical method designed to solve elliptic partial differential equations and systems using deep neural network functions and a dual formulation. The underlying elliptic problem is formulated as an optimization of the complementary energy functional in terms of the dual variable, where the Dirichlet boundary condition is weakly enforced in the formulation. To accurately evaluate the complementary energy functional, we employ a novel discrete divergence operator. This discrete operator preserves the underlying physics and naturally enforces the Neumann boundary condition without penalization. For problems without reaction term, we propose an outer-inner iterative procedure that gradually enforces the equilibrium equation through a pseudo-time approach. 
    more » « less
  5. null (Ed.)
    A bstract We develop a new technique for computing a class of four-point correlation functions of heavy half-BPS operators in planar $$ \mathcal{N} $$ N = 4 SYM theory which admit factorization into a product of two octagon form factors with an arbitrary bridge length. We show that the octagon can be expressed as the Fredholm determinant of the integrable Bessel operator and demonstrate that this representation is very efficient in finding the octagons both at weak and strong coupling. At weak coupling, in the limit when the four half-BPS operators become null separated in a sequential manner, the octagon obeys the Toda lattice equations and can be found in a closed form. At strong coupling, we exploit the strong Szegő limit theorem to derive the leading asymptotic behavior of the octagon and, then, apply the method of differential equations to determine the remaining subleading terms of the strong coupling expansion to any order in the inverse coupling. To achieve this goal, we generalize results available in the literature for the asymptotic behavior of the determinant of the Bessel operator. As a byproduct of our analysis, we formulate a Szegő-Akhiezer-Kac formula for the determinant of the Bessel operator with a Fisher-Hartwig singularity and develop a systematic approach to account for subleading power suppressed contributions. 
    more » « less