skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1950077

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The freshwater content of the Arctic Ocean has increased dramatically in the last two decades, particularly in the Beaufort Gyre. However, quantifying the sources of this change is an observational challenge and has historically been limited by methodological differences across studies. Here we derive observation‐based freshwater budgets from volume and mass budgets for the Arctic Ocean and the Beaufort Gyre from 2003 to 2020. Our budgets include all sources and sinks (river runoff, precipitation minus evaporation, land ice melt, sea ice export, sea ice melt, and ocean fluxes) as well as volume and mass storage terms measured by satellite. We find that Arctic freshwater changes are dominated by changes in the Beaufort Gyre, and we reconcile this with previous studies that argue for freshwater compensation between the Beaufort Gyre and the rest of the Arctic. We use inverse methods to close the volume and mass budgets within observational uncertainty and link the observed Arctic freshwater changes to the sources and sinks. Our budget analysis demonstrates that small changes to the ocean fluxes (smaller than we can measure) can account for all freshwater storage changes in the Arctic, highlighting the need for more careful accounting and detailed ocean observations in this rapidly changing environment. 
    more » « less
  2. Abstract The Canada Basin (CB) has seen significant sea‐ice loss in recent decades. We use output from the Pan‐Arctic Ice‐Ocean Modeling and Assimilation System to examine the 1979–2023 evolution of seasonal sea‐ice volume (SIV) changes in the CB partitioned into advective and thermodynamic changes. In winter, some years show net convergence into the region that is of comparable magnitude to the SIV change attributed to sea‐ice growth. In summer, melt/ablation dominates the change each year. In both seasons, 44 year trends in seasonal SIV changes are driven primarily by thermodynamic processes. The inferred thermodynamic growth each year is nearly equal to the inferred melt consistent with SIV at the end of the melt season declining more rapidly than SIV at the end of the growth season. Increased melt season atmospheric heating of the ice‐ocean system over 1979–2023, estimated from ERA5 reanalysis, is consistent with the ice‐albedo feedback. In the growth season, net cumulative atmospheric heat release from the ice‐ocean system shows no trend, suggesting increases in inferred thermodynamic ice growth can be attributed to more rapid growth of thinner ice. In each season, cumulative atmospheric heat input exceeds that required for ice melt/growth resulting in a residual that influences ocean heat content (OHC). Seasonal OHC changes, inferred from ocean observations, are equal to approximately one‐third of this residual, although limited ocean observations leave the total heat budget poorly constrained, highlighting a need for more water column observations. 
    more » « less
  3. Abstract Analysis of dissolved oxygen (O2) in the Arctic's surface ocean provides insights into gas transfer between the atmosphere‐ice‐ocean system, water mass dynamics, and biogeochemical processes. In the Arctic Ocean's Canada Basin mixed layer, higher O2concentrations are generally observed under sea ice compared to open water regions. Annual cycles of O2and O2saturation, increasing from summer through spring and then sharply declining to late summer, are tightly linked to sea ice cover. The primary fluxes that influence seasonal variability of O2are modeled and compared to Ice‐Tethered Profiler O2observations to understand the relative role of each flux in the annual cycle. Findings suggest that sea ice melt/growth dominates seasonal variations in mixed layer O2, with minor contributions from vertical entrainment and atmospheric exchange. While the influence of biological activity on O2variability cannot be directly assessed, indirect evidence suggests relatively minor contributions, although with significant uncertainty. Past studies show that O2molecules are expelled from sea ice during brine rejection; sea ice cover can then inhibit air‐sea gas exchange resulting in winter mixed layers that are super‐saturated. Decreasing mixed layer O2concentrations and saturation levels are observed during winter months between 2007 and 2019 in the Canada Basin. Only a minor portion of the decreasing trend in wintertime O2can be attributed to decreased solubility. This suggests the O2decline may be linked to more efficient air‐sea exchange associated with increased open water areas in the winter sea ice pack that are not necessarily detectable via satellite observations. 
    more » « less
  4. Abstract Diffusive convection can occur when two constituents of a stratified fluid have opposing effects on its stratification and different molecular diffusivities. This form of convection arises for the particular temperature and salinity stratification in the Arctic Ocean and is relevant to heat fluxes. Previous studies have suggested that planetary rotation may influence diffusive–convective heat fluxes, although the precise physical mechanisms and regime of rotational influence are not well understood. A linear stability analysis of a temperature and salinity interface bounded by two mixed layers is performed here to understand the stability properties of a diffusive–convective system, and in particular the transition from nonrotating to rotationally controlled heat transfer. Rotation is shown to stabilize diffusive convection by increasing the critical Rayleigh number to initiate instability. In the rotationally controlled regime, a −4/3 power law is found between the critical Rayleigh number and the Ekman number, similar to the scaling for rotating thermal convection. The transition from nonrotating to rotationally controlled convection, and associated drop in heat fluxes, is predicted to occur when the thermal interfacial thickness exceeds about 4 times the Ekman layer thickness. A vorticity budget analysis indicates how baroclinic vorticity production is counteracted by the tilting of planetary vorticity by vertical shear, which accounts for the stabilization effect of rotation. Finally, direct numerical simulations yield generally good agreement with the linear stability analysis. This study, therefore, provides a theoretical framework for classifying regimes of rotationally controlled diffusive–convective heat fluxes, such as may arise in some regions of the Arctic Ocean. 
    more » « less
  5. Abstract The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening. 
    more » « less
  6. Free, publicly-accessible full text available March 1, 2026