skip to main content

Search for: All records

Award ID contains: 1950416

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Specifying and verifying the temporal properties of UML-based systems can be challenging. Although there exist some extensions of OCL to support the specification of temporal properties in UML-based notations, most of the approaches depend on using non-UML formal formalisms such as LTL, CTL, and CTL* while transforming the under-development UML models into non-UML model checking frameworks for verification. This approach introduces complexities and relies on techniques and tools that are not within the UML spectrum. In this paper, we show how TOCL (one OCL extension for temporal properties specification) can be transformed into OCL for verification purposes. Towards this end, we created a formal EBNF grammar for TOCL, based on which a parser and a MOF metamodel were generated for the language. Additionally, to facilitate the analysis of the TOCL properties, we formally defined transformation rules from TOCL metamodel to OCL metamodel using QVT. Finally, we validated the implementations of the transformation rules using USE.
    Free, publicly-accessible full text available October 23, 2023
  2. Privacy policies, despite the important information they provide about the collection and use of one's data, tend to be skipped over by most Internet users. In this paper, we seek to make privacy policies more accessible by automatically classifying web privacy. We use natural language processing techniques and multiple machine learning models to determine the effectiveness of each method in the classification method. We also explore the effectiveness of these methods to classify privacy policies of Internet of Things (IoT) devices.
    Free, publicly-accessible full text available October 22, 2023
  3. In this work we present a process and a tool to apply formal methods in Internet of Things (IoT) applications using the Unified Modeling Language (UML). As there are no best practices to develop secured IoT systems, we have developed a plug-in tool that integrates a framework to validate UML software models and we present the design of a location-based IoT application as a use case for the validation tool.
    Free, publicly-accessible full text available October 22, 2023
  4. In this study we explore the use of blockchain with IoT devices to provide visitor authentication and access control in a physical environment. We propose a “bracelet” using a NodeMCU that transmits visitor location information and cannot be removed without alerting a management system. Our results show that the proposed system has noticeable improvements over a similar system proposed last year, increasing the practicality of implementing such a system.
    Free, publicly-accessible full text available October 22, 2023
  5. Free, publicly-accessible full text available April 18, 2023
  6. Free, publicly-accessible full text available February 1, 2023
  7. Since its inception in 2013, Bluetooth Low Energy (BLE) has become the standard for short-distance wireless communication in many consumer devices, as well as special-purpose devices. In this study, we analyze the security features available in Bluetooth LE standards and evaluate the features implemented in two BLE wearable devices (a Fitbit heart rate wristband and a Polar heart rate chest wearable) and a BLE keyboard to explore which security features in the BLE standards are implemented in the devices. In this study, we used the ComProbe Bluetooth Protocol Analyzer, along with the ComProbe software to capture the BLE traffic of these three devices. We found that even though the standards provide security mechanisms, because the Bluetooth Special Interest Group does not require that manufacturers fully comply with the standards, some manufacturers fail to implement proper security mechanisms. The circumvention of security in Bluetooth devices could leak private data that could be exploited by rogue actors/hackers, thus creating security, privacy, and, possibly, safety issues for consumers and the public. We propose the design of a Bluetooth Security Facts Label (BSFL) to be included on a Bluetooth/BLE enabled device’s commercial packaging and conclude that there should be better mechanisms for informing usersmore »about the security and privacy provisions of the devices they acquire and use and to educate the public on protection of their privacy when buying a connected device.« less
    Free, publicly-accessible full text available February 1, 2023
  8. This study applies the high data integrity that comes with blockchain technology towards authentication and access control for visitors of a physical facility. The use of smart contracts on an Ethereum based implementation of the blockchain allows for smart contract code to handle both access control and visitor authentication at scale. Javascript code executed off the blockchain enables the system to interact with and parse through the blockchain data. The proposed system is scalable, applies to multiple use cases, and mitigates issues a centralized approach faces.
    Free, publicly-accessible full text available December 1, 2022
  9. Wearable sensing technologies are having a worldwide impact on the creation of novel business opportunities and application services that are benefiting the common citizen. By using these technologies, people have transformed the way they live, interact with each other and their surroundings, their daily routines, and how they monitor their health conditions. We review recent advances in the area of wearable sensing technologies, focusing on aspects such as sensor technologies, communication infrastructures, service infrastructures, security, and privacy. We also review the use of consumer wearables during the coronavirus disease 19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we discuss open challenges that must be addressed to further improve the efficacy of wearable sensing systems in the future.
  10. The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing a way for bystanders to protect their own privacy rather than relying on external systems for protection. While past works in the literature focused on privacy perceptions of bystanders when photographed in public/shared spaces, there has not been research with a focus on user perceptions of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy. In our study, we found that 16 participants would use FacePET or similar devices to enhance their facialmore »privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities, it would allow them to become more popular.« less