skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physical Visitor Access Control and Authentication Using Blockchain, Smart Contracts and Internet of Things
In this work we explore the use of blockchain with Internet of Things (IoT) devices to provide visitor authentication and access control in a physical environment. We propose the use of a “bracelet” based on a low-cost NodeMCU IoT platform that broadcasts visitor location information and cannot be removed without alerting a management system. We present the design, implementation, and testing of our system. Our results show the feasibility of implementing a physical access control system based on blockchain technology, and performance improvements over a similar system proposed in the literature.  more » « less
Award ID(s):
1950416
PAR ID:
10385014
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cryptography
Volume:
6
Issue:
4
ISSN:
2410-387X
Page Range / eLocation ID:
65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study we explore the use of blockchain with IoT devices to provide visitor authentication and access control in a physical environment. We propose a “bracelet” using a NodeMCU that transmits visitor location information and cannot be removed without alerting a management system. Our results show that the proposed system has noticeable improvements over a similar system proposed last year, increasing the practicality of implementing such a system. 
    more » « less
  2. This study applies the high data integrity that comes with blockchain technology towards authentication and access control for visitors of a physical facility. The use of smart contracts on an Ethereum based implementation of the blockchain allows for smart contract code to handle both access control and visitor authentication at scale. Javascript code executed off the blockchain enables the system to interact with and parse through the blockchain data. The proposed system is scalable, applies to multiple use cases, and mitigates issues a centralized approach faces. 
    more » « less
  3. The increasing adoption of smart home devices has raised significant concerns regarding privacy, security, and vulnerability to cyber threats. This study addresses these challenges by presenting a federated learning framework enhanced with blockchain technology to detect intrusions in smart home environments. The proposed approach combines knowledge distillation and transfer learning to support heterogeneous IoT devices with varying computational capacities, ensuring efficient local training without compromising privacy. Blockchain technology is integrated to provide decentralized, tamper-resistant access control through Role-Based Access Control (RBAC), allowing only authenticated devices to participate in the federated learning process. This combination ensures data confidentiality, system integrity, and trust among devices. This framework’s performance was evaluated using the N-BaIoT dataset, showcasing its ability to detect anomalies caused by botnets such as Mirai and BASHLITE across diverse IoT devices. Results demonstrate significant improvements in intrusion detection accuracy, particularly for resource-constrained devices, while maintaining privacy and adaptability in dynamic smart home environments. These findings highlight the potential of this blockchain-enhanced federated learning system to offer a scalable, robust, and privacy-preserving solution for securing smart homes against evolving threats. 
    more » « less
  4. Zero trust (ZT) is the term for an evolving set of cybersecurity paradigms that move defenses from static, network-based perimeters to focus on users, assets, and resources. It assumes no implicit trust is granted to assets or user accounts based solely on their physical or network location. We have billions of devices in IoT ecosystems connected to enable smart environments, and these devices are scattered around different locations, sometimes multiple cities or even multiple countries. Moreover, the deployment of resource-constrained devices motivates the integration of IoT and cloud services. This adoption of a plethora of technologies expands the attack surface and positions the IoT ecosystem as a target for many potential security threats. This complexity has outstripped legacy perimeter-based security methods as there is no single, easily identified perimeter for different use cases in IoT. Hence, we believe that the need arises to incorporate ZT guiding principles in workflows, systems design, and operations that can be used to improve the security posture of IoT applications. This paper motivates the need to implement ZT principles when developing access control models for smart IoT systems. It first provides a structured mapping between the ZT basic tenets and the PEI framework when designing and implementing a ZT authorization system. It proposes the ZT authorization requirements framework (ZT-ARF), which provides a structured approach to authorization policy models in ZT systems. Moreover, it analyzes the requirements of access control models in IoT within the proposed ZT-ARF and presents the vision and need for a ZT score-based authorization framework (ZT-SAF) that is capable of maintaining the access control requirements for ZT IoT connected systems. 
    more » « less
  5. Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance. 
    more » « less