skip to main content


Search for: All records

Award ID contains: 1951070

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. On any closed Riemannian manifold of dimension , we prove that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close, in a quantitative sense, to a minimizing Yamabe metric in the conformal class. Generically, this distance is controlled quadratically by the Yamabe energy deficit. Finally, we produce an example for which this quadratic estimate is false. 
    more » « less
  2. null (Ed.)
    Abstract We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian. 
    more » « less
  3. null (Ed.)
  4. We consider various versions of the obstacle and thin-obstacle problems, we interpret them as variational inequalities, with non-smooth constraint, and prove that they satisfy a new constrained Łojasiewicz inequality. The difficulty lies in the fact that, since the constraint is non-analytic, the pioneering method of L. Simon ([]) does not apply and we have to exploit a better understanding on the constraint itself. We then apply this inequality to two associated problems. First we combine it with an abstract result on parabolic variational inequalities, to prove the convergence at infinity of the strong global solutions to the parabolic obstacle and thin-obstacle problems to a unique stationary solution with a rate. Secondly, we give an abstract proof, based on a parabolic approach, of the epiperimetric inequality, which we then apply to the singular points of the obstacle and thin-obstacle problems. 
    more » « less