skip to main content

Title: Regularity of the free boundary for the two-phase Bernoulli problem
Abstract We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian.
; ;
Award ID(s):
Publication Date:
Journal Name:
Inventiones mathematicae
Page Range or eLocation-ID:
347 to 394
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We focus on the existence and rigidity problems of the vectorial Peierls–Nabarro (PN) model for dislocations. Under the assumption that the misfit potential on the slip plane only depends on the shear displacement along the Burgers vector, a reduced non-local scalar Ginzburg–Landau equation with an anisotropic positive (if Poisson ratio belongs to (−1/2, 1/3)) singular kernel is derived on the slip plane. We first prove that minimizers of the PN energy for this reduced scalar problem exist. Starting from H 1/2 regularity, we prove that these minimizers are smooth 1D profiles only depending on the shear direction, monotonically and uniformly converge to two stable states at far fields in the direction of the Burgers vector. Then a De Giorgi-type conjecture of single-variable symmetry for both minimizers and layer solutions is established. As a direct corollary, minimizers and layer solutions are unique up to translations. The proof of this De Giorgi-type conjecture relies on a delicate spectral analysis which is especially powerful for nonlocal pseudo-differential operators with strong maximal principle. All these results hold in any dimension since we work on the domain periodic in the transverse directions of the slip plane. The physical interpretation of this rigidity result ismore »that the equilibrium dislocation on the slip plane only admits shear displacements and is a strictly monotonic 1D profile provided exclusive dependence of the misfit potential on the shear displacement.« less
  2. In this paper, we consider minimizers for nonlocal energy functionals generalizing elastic energies that are connected with the theory of peridynamics [19] or nonlocal diffusion models [1]. We derive nonlocal versions of the Euler-Lagrange equations under two sets of growth assumptions for the integrand. Existence of minimizers is shown for integrands with joint convexity (in the function and nonlocal gradient components). By using the convolution structure, we show regularity of solutions for certain Euler-Lagrange equations. No growth assumptions are needed for the existence and regularity of minimizers results, in contrast with the classical theory.
  3. Abstract We study optimal regularity and free boundary for minimizers of an energy functional arising in cohesive zone models for fracture mechanics. Under smoothness assumptions on the boundary conditions and on the fracture energy density, we show that minimizers are $$C^{1, 1/2}$$ C 1 , 1 / 2 , and that near non-degenerate points the fracture set is $$C^{1, \alpha }$$ C 1 , α , for some $$\alpha \in (0, 1)$$ α ∈ ( 0 , 1 ) .
  4. Abstract Motivation Minimizers are efficient methods to sample k-mers from genomic sequences that unconditionally preserve sufficiently long matches between sequences. Well-established methods to construct efficient minimizers focus on sampling fewer k-mers on a random sequence and use universal hitting sets (sets of k-mers that appear frequently enough) to upper bound the sketch size. In contrast, the problem of sequence-specific minimizers, which is to construct efficient minimizers to sample fewer k-mers on a specific sequence such as the reference genome, is less studied. Currently, the theoretical understanding of this problem is lacking, and existing methods do not specialize well to sketch specific sequences. Results We propose the concept of polar sets, complementary to the existing idea of universal hitting sets. Polar sets are k-mer sets that are spread out enough on the reference, and provably specialize well to specific sequences. Link energy measures how well spread out a polar set is, and with it, the sketch size can be bounded from above and below in a theoretically sound way. This allows for direct optimization of sketch size. We propose efficient heuristics to construct polar sets, and via experiments on the human reference genome, show their practical superiority in designing efficient sequence-specificmore »minimizers. Availability and implementation A reference implementation and code for analyses under an open-source license are at Supplementary information Supplementary data are available at Bioinformatics online.« less
  5. Abstract Combining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude withmore »simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method.« less