skip to main content


Search for: All records

Award ID contains: 1951244

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.

     
    more » « less
  2. Abstract

    We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.

     
    more » « less
  3. Abstract

    Frequent drought and high temperature conditions in California vineyards necessitate plant stress detection to support irrigation management strategies and decision making. Remote sensing provides a powerful tool to continuously monitor vegetation function across spatial and temporal scales. In this study, we utilized a tower-based optical-remote sensing system to continuously monitor four vineyard subplots in California’s Central Valley. We compared the performance of the greenness-based normalized difference vegetation index (NDVI) and the physiology-based photochemical reflectance index (PRI) to track variations of eddy covariance estimated gross primary productivity (GPP) during four stress events between July and September 2020. Our results demonstrate that NDVI was invariant during stress events. In contrast, PRI was effective at tracking the short-term stress-induced declines and recovery of GPP associated with soil water depletion and increased air temperature, as well as reductions in GPP from decreased PAR caused by smokey conditions from nearby fires. Canopy-scale remote sensing can provide continuous real-time data, and physiology-based vegetation indices such as PRI can be used to monitor variation of photosynthetic activity during stress events to aid in management decisions.

     
    more » « less
  4. Abstract

    Reduced stomatal conductance is a common plant response to rising atmospheric CO2and increases water use efficiency (W). At the leaf-scale,Wdepends on water and nitrogen availability in addition to atmospheric CO2. In hydroclimate modelsWis a key driver of rainfall, droughts, and streamflow extremes. We used global climate data to derive Aridity Indices (AI) for forests over the period 1965–2015 and synthesised those with data for nitrogen deposition andWderived from stable isotopes in tree rings. AI and atmospheric CO2account for most of the variance inWof trees across the globe, while cumulative nitrogen deposition has a significant effect only in regions without strong legacies of atmospheric pollution. The relation of aridity andWdisplays a clear discontinuity.Wand AI are strongly related below a threshold value of AI ≈ 1 but are not related where AI > 1. Tree ring data emphasise that effective demarcation of water-limited from non-water-limited behaviour of stomata is critical to improving hydrological models that operate at regional to global scales.

     
    more » « less
  5. SUMMARY

    Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome‐wide association study methods were used to identify candidate genes in two iconic and ecosystem‐dominating species of the western USA, coast redwood and giant sequoia, using 10 drought‐related physiological and anatomical traits and genome‐wide sequence‐capture single nucleotide polymorphisms. Population‐level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long‐generation conifers and helps guide current and future conservation efforts in the species.

     
    more » « less
  6. Summary

    Conifers prevail in the canopies of many terrestrial biomes, holding a great ecological and economic importance globally. Current increases in temperature and aridity are imposing high transpirational demands and resulting in conifer mortality. Therefore, identifying leaf structural determinants of water use efficiency is essential for predicting physiological impacts due to environmental variation.

    Using synchrotron‐generated microtomography imaging, we extracted leaf volumetric anatomy and stomatal traits in 34 species across conifers with a special focus onPinus, the richest conifer genus.

    We show that intrinsic water use efficiency (WUEi) is positively driven by leaf vein volume. Needle‐like leaves ofPinus, as opposed to flat leaves or flattened needles of other genera, showed lower mesophyll porosity, decreasing the relative mesophyll volume. This led to increased ratios of stomatal pore number per mesophyll or intercellular airspace volume, which emerged as powerful explanatory variables, predicting both stomatal conductance and WUEi.

    Our results clarify how the three‐dimensional organisation of tissues within the leaf has a direct impact on plant water use and carbon uptake. By identifying a suite of structural traits that influence important physiological functions, our findings can help to understand how conifers may respond to the pressures exerted by climate change.

     
    more » « less
  7. Summary

    Photosynthetic capacity per unit irradiance is greater, and the marginal carbon revenue of water (∂A/∂E) is smaller, in shaded leaves than sunlit leaves, apparently contradicting optimization theory. I tested the hypothesis that these patterns arise from optimal carbon partitioning subject to biophysical constraints on leaf water potential.

    In a whole plant model with two canopy modules, I adjusted carbon partitioning, nitrogen partitioning and leaf water potential to maximize carbon profit or canopy photosynthesis, and recorded how gas exchange parameters compared between shaded and sunlit modules in the optimum.

    The model predicted that photosynthetic capacity per unit irradiance should be larger, and ∂A/∂Esmaller, in shaded modules compared to sunlit modules. This was attributable partly to radiation‐driven differences in evaporative demand, and partly to differences in hydraulic conductance arising from the need to balance marginal returns on stem carbon investment between modules. The model verified, however, that invariance in the marginal carbon revenue of N (∂A/∂N) is in fact optimal.

    The Cowan–Farquhar optimality solution (invariance of ∂A/∂E) does not apply to spatial variation within a canopy. The resulting variation in carbon–water economy explains differences in capacity per unit irradiance, reconciling optimization theory with observations.

     
    more » « less
  8. Abstract Background Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). Results We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. Conclusions TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  9. Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits ( R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening. 
    more » « less