skip to main content

This content will become publicly available on July 5, 2024

Title: Low baseline intraspecific variation in leaf pressure‐volume traits: Biophysical basis and implications for spectroscopic sensing

Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVrefrelative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVreffor PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVrefenables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Physiologia Plantarum
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The fundamental tradeoff between carbon gain and water loss has long been predicted as an evolutionary driver of plant strategies across environments. Nonetheless, challenges in measuring carbon gain and water loss in ways that integrate over leaf lifetime have limited our understanding of the variation in and mechanistic bases of this tradeoff. Furthermore, the microevolution of plant traits within species versus the macroevolution of strategies among closely related species may not be the same, and accordingly, the latter must be addressed using comparative phylogenetic analyses.

    Here we introduce the concept of ‘integrated metabolic strategy’ (IMS) to describe the ratio between carbon isotope composition (δ13C) and oxygen isotope composition above source water (Δ18O) of leaf cellulose. IMS is a measure of leaf‐level conditions that integrate several mechanisms contributing to carbon gain (δ13C) and water loss (Δ18O) over leaf lifespan, with larger values reflecting higher metabolic efficiency and hence less of a tradeoff. We tested how IMS evolves among closely related yet ecologically diverse milkweed species, and subsequently addressed phenotypic plasticity in response to water availability in species with divergent IMS.

    Integrated metabolic strategy varied strongly among 20Asclepiasspecies when grown under controlled conditions, and phylogenetic analyses demonstrate species‐specific tradeoffs between carbon gain and water loss. Larger IMS values were associated with species from dry habitats, with larger carboxylation capacity, smaller stomatal conductance and smaller leaves; smaller IMS was associated with wet habitats, smaller carboxylation capacity, larger stomatal conductance and larger leaves. The evolution of IMS was dominated by changes in species’ demand for carbon (δ13C) more so than water conservation (Δ18O). Although some individual physiological traits showed phylogenetic signal, IMS did not.

    In response to experimental decreases in soil moisture, three species maintained similar IMS across levels of water availability because of proportional increases inδ13C and Δ18O (or little change in either), while one species increased IMS due to disproportional changes inδ13C relative to Δ18O.

    Synthesis.IMS is a broadly applicable mechanistic tool; IMS variation among and within species may shed light on unresolved questions relating to the evolution and ecology of plant ecophysiological strategies.

    more » « less
  2. Abstract

    Multidimensional trait frameworks are increasingly used to understand plant strategies for growth and survival. However, it is unclear if frameworks developed at a global level can be applied in local communities and how well these frameworks—based largely on plant morphological traits—align with plant physiology and response to stress.

    We tested the ability of an integrated framework of plant form and function to characterise seedling trait variation and drought response among 22 grasses and forbs common in a semi‐arid grassland. We measured above‐ground and below‐ground traits, and survival to explore how drought response is linked to three trait dimensions (resource conservation, microbial collaboration, and plant size) associated with the framework as well as non‐morphological dimensions (e.g. physiological traits) that are under‐represented in global trait frameworks.

    We found support for three globally‐recognised axes representing trade‐offs in strategies associated with tissue investment (leaf nitrogen, leaf mass per area, root tissue density), below‐ground resource uptake (root diameter, specific root length), and size (shoot mass). However, in contrast to global patterns, above‐ground and below‐ground resource conservation gradients were oppositely aligned: root tissue density was positively correlated with leaf N rather than leaf mass per area. This likely reflects different investment strategies of annual and perennial herbaceous species, as fast‐growing annual species invested in lower density roots and less nitrogen‐rich leaves to maximise plant‐level carbon assimilation. Species with longer drought survival minimised water loss through small above‐ground size and low leaf‐level transpiration rates, and drought survival was best predicted by a principal component axis representing plant size.

    Contrary to our expectations, drought survival in seedlings did not align with the conservation or collaboration axes suggesting that seedlings with different functional strategies can achieve similar drought survival, as long as they minimise water loss. Our results also show that within local communities, expected trait relationships could be decoupled as some plant groups achieve similar performance through different trait combinations. The effectiveness of species mean trait values in predicting drought response highlights the value of trait‐based methods as a versatile tool for understanding ecological processes locally across various ecosystems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  3. Abstract

    Plasticity in plant traits, including secondary metabolites, is critical to plant survival and competitiveness under stressful conditions. The ability of a plant to respond effectively to combined stressors can be impacted by crosstalk in biochemical pathways, resource availability and evolutionary history, but such responses remain underexplored. In particular, we know little about intraspecific variation in response to combined stressors or whether such variation is associated with the stress history of a given population.

    Here, we investigated the consequences of combined water and herbivory stress for plant traits, including relative growth rate, leaf morphology and various measures of phytochemistry, using a common garden ofAsclepias fascicularismilkweeds. To examine how plant trait means and plasticities depend on the history of environmental stress, seeds for the experiment were collected from across a gradient of aridity in the Great Basin, United States. We then conducted a factorial experiment crossing water limitation with herbivory.

    Plants responded to water limitation alone by increasing the evenness of UV‐absorbent secondary metabolites and to herbivory alone by increasing the richness of metabolites. However, plants that experienced combined water and herbivory stress exhibited similar phytochemical diversity to well‐watered control plants. This lack of plasticity in phytochemical diversity in plants experiencing combined stressors was associated with a reduction in relative growth rates.

    Leaf chemistry means and plasticities exhibited clinal variation corresponding to seed source water deficits. The total concentration of UV‐absorbent metabolites decreased with increasing water availability among seed sources, driven by higher concentrations of flavonol glycosides, which are hypothesized to act as antioxidants, among plants from drier sites. Plants sourced from drier sites exhibited higher plasticity in flavonol glycoside concentrations in response to water limitation, which increased phytochemical evenness, but simultaneous herbivory dampened plant responses to water limitation irrespective of seed source.

    Synthesis. These results suggest that climatic history can affect intraspecific phytochemical plasticity, which may confer tolerance to water limitation, but that co‐occurring herbivory disrupts such patterns. Global change is increasing the frequency and intensity of stress combinations, such that understanding intraspecific responses to combined stressors is critical for predicting the persistence of plant populations.

    more » « less
  4. Abstract

    The coordination of traits from individual organs to whole plants is under strong selection because of environmental constraints on resource acquisition and use. However, the tight coordination of traits may provide underlying mechanisms of how locally adapted plant populations can become maladapted because of climate change.

    To better understand local adaptation in intraspecific trait coordination, we studied trait variability in the widely distributed foundation tree species,Populus fremontiiusing a common garden near the mid‐elevational point of this species distribution. We examined 28 traits encompassing four spectra: phenology, leaf economic spectrum (LES), whole‐tree architecture (Corner's Rule) and wood economic spectrum (WES).

    Based on adaptive syndrome theory, we hypothesized that trait expression would be coordinated among and within trait spectra, reflecting local adaptation to either exposure to freeze‐thaw conditions in genotypes sourced from high‐elevation populations or exposure to extreme thermal stress in genotypes sourced from low‐elevation populations.

    High‐elevation genotypes expressed traits within the phenology and WES that limit frost exposure and tissue damage. Specifically, genotypes sourced from high elevations had later mean budburst, earlier mean budset, higher wood densities, higher bark fractions and smaller xylem vessels than their low‐elevation counterparts. Conversely, genotypes sourced from low elevations expressed traits within the LES that prioritized hydraulic efficiency and canopy thermal regulation to cope with extreme heat exposure, including 40% smaller leaf areas, 67% higher stomatal densities and 34% higher mean theoretical maximum stomatal conductance. Low‐elevation genotypes also expressed a lower stomatal control over leaf water potentials that subsequently dropped to pressures that could induce hydraulic failure.

    Synthesis. Our results suggest thatPopulus fremontiiexpresses a high degree of coordination across multiple trait spectra to adapt to local climate constraints on photosynthetic gas exchange, growth and survival. These results, therefore, increase our mechanistic understanding of local adaptation and the potential effects of climate change that in turn, improves our capacity to identify genotypes that are best suited for future restoration efforts.

    more » « less
  5. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons. 
    more » « less