- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004100000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Nelson, Jelani (5)
-
Feldman, Vitaly (2)
-
Talwar, Kunal (2)
-
Aliakbarpour, Maryam (1)
-
Asi, Hilal (1)
-
Jin, Ce (1)
-
McGregor, Andrew (1)
-
Nguyen, Huy (1)
-
Nguyen, Huy L. (1)
-
Waingarten, Erik (1)
-
Wu, Kewen (1)
-
Yu, Huacheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball. Existing algorithms for this problem either incur sub-optimal error or have high communication and/or run-time complexity. We propose a new algorithmic framework, ProjUnit, for private mean estimation that yields algorithms that are computationally efficient, have low communication complexity, and incur optimal error up to a 1+o(1)-factor. Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm such as PrivUnitG in the lower-dimensional space. In addition, we show that, by appropriately correlating the random projection matrices across devices, we can achieve fast server run-time. We mathematically analyze the error of the algorithm in terms of properties of the random projections, and study two instantiations. Lastly, our experiments for private mean estimation and private federated learning demonstrate that our algorithms empirically obtain nearly the same utility as optimal ones while having significantly lower communication and computational cost.more » « less
-
Aliakbarpour, Maryam; McGregor, Andrew; Nelson, Jelani; Waingarten, Erik (, Proceedings of the 34th Annual Conference on Advances in Neural Information Processing Systems (NeurIPS))
-
Nelson, Jelani; Yu, Huacheng (, Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems)
-
Feldman, Vitaly; Nelson, Jelani; Nguyen, Huy L.; Talwar, Kunal (, Proceedings of the 39th International Conference on Machine Learning (ICML))
-
Jin, Ce; Nelson, Jelani; Wu, Kewen (, STACS)null (Ed.)
An official website of the United States government

Full Text Available