Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ride-hailing can potentially provide a variety of benefits to individuals who need to chain several activities together within a single trip chain, relative to other travel modes. Using household travel diary/survey data, the goal of this study is to assess the role ride-hailing currently plays within trip chains. Specifically, the study aims to determine, within trip chains, who uses ride-hailing services, for what trip/activity purposes, and to/from what types of areas, as well as the characteristics of trip chains that involve ride-hailing segments. To meet these objectives, the study estimates a binary logit model using 2017 National Household Travel Survey data, where the dependent variable denotes the inclusion of at least one ride-hailing trip within a trip chain. Similar to the non-trip-chaining ride-hailing literature, this study indicates that trip chains with ride-hailing legs are positively associated with travelers who are younger, live in high-income households, frequently use transit, and reside in high-density areas. However, this study includes novel findings indicating statistically significant relationships between ride-hailing and trip chains that end in healthcare and social/recreational activities. Moreover, trip chains with ride-hailing tend to have fewer stops and longer activity durations than trip chains without ride-hailing. This study also includes nested logit choice models, wherein the dependent variable denotes the primary mode (ride-hailing, transit, personal vehicle, or non-motorized transport) of a trip chain. These model results provide additional insights into the role of ride-hailing within trip chains, as they allow for cross-mode comparisons. The paper discusses the potential transportation planning and policy implications of the model results as well as future research directions.more » « less
-
For transportation system analysis in a new space dimension with respect to individual trips’ remaining distances, vehicle trips demand has two main components: the departure time and the trip distance. In particular, the trip distance distribution (TDD) is a direct input to the bathtub model in the new space dimension, and is a very important variable to consider in many applications, such as the development of distance-based congestion pricing strategies or mileage tax. For a good understanding of the demand pattern, both the distribution of trip initiation and trip distance should be calibrated from real data. In this paper, it is assumed that the demand pattern can be described by the joint distribution of trip distance and departure time. In other words, TDD is assumed to be time-dependent, and a calibration and validation methodology of the joint probability is proposed, based on log-likelihood maximization and the Kolmogorov–Smirnov test. The calibration method is applied to empirical for-hire vehicle trips in Chicago, and it is concluded that TDD varies more within a day than across weekdays. The hypothesis that TDD follows a negative exponential, log-normal, or Gamma distribution is rejected. However, the best fit is systematically observed for the time-dependent log-normal probability density function. In the future, other trip distributions should be considered and also non-parametric probability density estimation should be explored for a better understanding of the demand pattern.more » « less
An official website of the United States government
