skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the role of ride-hailing in trip chains
Abstract Ride-hailing can potentially provide a variety of benefits to individuals who need to chain several activities together within a single trip chain, relative to other travel modes. Using household travel diary/survey data, the goal of this study is to assess the role ride-hailing currently plays within trip chains. Specifically, the study aims to determine, within trip chains, who uses ride-hailing services, for what trip/activity purposes, and to/from what types of areas, as well as the characteristics of trip chains that involve ride-hailing segments. To meet these objectives, the study estimates a binary logit model using 2017 National Household Travel Survey data, where the dependent variable denotes the inclusion of at least one ride-hailing trip within a trip chain. Similar to the non-trip-chaining ride-hailing literature, this study indicates that trip chains with ride-hailing legs are positively associated with travelers who are younger, live in high-income households, frequently use transit, and reside in high-density areas. However, this study includes novel findings indicating statistically significant relationships between ride-hailing and trip chains that end in healthcare and social/recreational activities. Moreover, trip chains with ride-hailing tend to have fewer stops and longer activity durations than trip chains without ride-hailing. This study also includes nested logit choice models, wherein the dependent variable denotes the primary mode (ride-hailing, transit, personal vehicle, or non-motorized transport) of a trip chain. These model results provide additional insights into the role of ride-hailing within trip chains, as they allow for cross-mode comparisons. The paper discusses the potential transportation planning and policy implications of the model results as well as future research directions.  more » « less
Award ID(s):
1952241
PAR ID:
10363344
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Transportation
Volume:
50
Issue:
3
ISSN:
0049-4488
Page Range / eLocation ID:
p. 959-1002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation baselines. 
    more » « less
  2. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. Our evaluation results show that CityLines framework can achieve both short travel time and high ride-sharing ratio. 
    more » « less
  3. Electrifying the ride-hailing services has the potential to significantly reduce greenhouse gas emissions in the shared mobility sector. However, these emission reduction benefits depend on the utilization of EVs to serve trip requests, especially during the fleet electrification process. In this paper, we evaluated the performance and emission impacts of ride-hailing service with three dispatching policies and various EV penetration levels in the ride-hailing fleet. A large-scale simulation platform was developed for the city of San Francisco in SUMO to enable the application of ride-hailing, electric vehicle charging, and idle vehicle repositioning. Simulation results indicate that with a 60% EVs in the simulated fleet, the off-peak EV priority policy and off-peak EV only policy can reduce CO2 emissions by 32% - 40% while preserving the mobility performance in terms of deadheading, total travel distance, and average rider pick-up time. It is important for ride-hailing platforms to increase the zero-emission rides and encourage ride pooling to comply with California’s Clean Miles Standard. 
    more » « less
  4. With the advent of new mobility modes and technologies, we have seen meaningful changes in travel behavior. One such new mobility mode is on-demand transit. The Metropolitan Atlanta Rapid Transit Authority deployed its own on-demand transit system, dubbed MARTA Reach, in March of 2022. This paper provides an evaluation of the characteristics of two groups of people related to MARTA Reach: those who were interested in it and used it and those who were interested in it but did not use it. In addition, this paper explores the factors that influence membership in each of those two groups using a binary logit model, revealing the underlying characteristics that are linked with the decision to use or not use the service given prior interest. The findings show that simply providing more service has the strongest effect on adoption. Among 561 survey respondents, 426 expressed that the service area for MARTA Reach was too limited for their needs. Modeling results support this finding, in addition to the following strong predictors of on-demand transit adoption: 1) being a frequent transit user, 2) being satisfied with the current state of fixed-route transit service, 3) being part of a low-income household, 4) living within an on-demand transit service area, and 5) being younger. Understanding these group characteristics and underlying factors can help guide future efforts to provide on-demand transit service, such as by targeting the market segments that share features with the underlying factors that are shown herein to be linked with on-demand transit adoption. 
    more » « less
  5. Jin, Sheng (Ed.)
    This work considers the sensitivity of commute travel times in US metro areas due to potential changes in commute patterns, for example caused by events such as pandemics. Permanent shifts away from transit and carpooling can add vehicles to congested road networks, increasing travel times. Growth in the number of workers who avoid commuting and work from home instead can offset travel time increases. To estimate these potential impacts, 6-9 years of American Community Survey commute data for 118 metropolitan statistical areas are investigated. For 74 of the metro areas, the average commute travel time is shown to be explainable using only the number of passenger vehicles used for commuting. A universal Bureau of Public Roads model characterizes the sensitivity of each metro area with respect to additional vehicles. The resulting models are then used to determine the change in average travel time for each metro area in scenarios when 25% or 50% of transit and carpool users switch to single occupancy vehicles. Under a 25% mode shift, areas such as San Francisco and New York that are already congested and have high transit ridership may experience round trip travel time increases of 12 minutes (New York) to 20 minutes (San Francisco), costing individual commuters $1065 and $1601 annually in lost time. The travel time increases and corresponding costs can be avoided with an increase in working from home. The main contribution of this work is to provide a model to quantify the potential increase in commute travel times under various behavior changes, that can aid policy making for more efficient commuting. 
    more » « less