skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1952792

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study couples FN‐curves with Agent‐based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in‐depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN‐curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the “levee effect,” which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at‐risk populations, but also results in two risk increasing phenomena: “exposure to risk” (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and “blind zones” (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN‐curves with ABMS can be used by local authorities and engineers to determine tailored hard‐adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2025
  3. Abstract Building community resilience has become a national imperative. Substantial uncertainties in dynamic environments of emergencies and crises require real‐time information collection and dissemination based on big data analytics. These, in turn, require networked communities and cross‐sector partnerships to build lasting resilience. This viewpoint article highlights an interdisciplinary approach to building community resilience through community‐engaged research and partnerships. This perspective leverages existing community partnerships and network resources, undertakes an all‐hazard and whole‐community approach, and evaluates the use of state‐of‐the‐art information communication technologies. In doing so, it reinforces the multifaceted intergovernmental and cross‐sector networks through which resilience can be developed and sustained. 
    more » « less
  4. City governments incorporate ICTs into government services to improve citizen participation and access to those services. Too much dependence on technology, however, can lead to concerns about creating a digital divide between different groups of citizens. The potential for digital inequality is a critical issue that can be exacerbated by insufficient attention being paid to vulnerabilities across communities. Given that socio-economically vulnerable populations are the ones who need government services the most, especially during disaster events, it is critical to investigate the extent to which digital inequality is an issue for technology-based government services. With this in mind, this paper analyzes the use of different technology-enabled access options for a representative eGovernment service system, the New York City 311 service system, in the early stages of the COVID-19 pandemic. Two sets of socio-economically distinct locations in New York City are compared, using average income as a proxy for vulnerability, to draw conclusions about potential inequalities in such a system during a crisis. 
    more » « less
  5. Abstract. Previous tsunami evacuation simulations have mostly been based on arbitrary assumptions or inputs adapted from non-emergency situations, but a few studies have used empirical behavior data. This study bridges this gap by integrating empirical decision data from surveys on local evacuation expectations and evacuation drills into an agent-based model of evacuation behavior for two Cascadia subduction zone (CSZ) communities that would be inundated within 20–40 min after a CSZ earthquake. The model also considers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we integrate the slope-speed component from least-cost distance to build the simulation model that better represents the complex nature of evacuations. The simulation results indicate that milling time and the evacuation participation rate have significant nonlinear impacts on tsunami mortality estimates. When people walk faster than 1 m s−1, evacuation by foot is more effective because it avoids traffic congestion when driving. We also find that evacuation results are more sensitive to walking speed, milling time, evacuation participation, and choosing the closest safe location than to other behavioral variables. Minimum tsunami mortality results from maximizing the evacuation participation rate, minimizing milling time, and choosing the closest safe destination outside of the inundation zone. This study's comparison of the agent-based model and the beat-the-wave (BtW) model finds consistency between the two models' results. By integrating the natural system, built environment, and social system, this interdisciplinary model incorporates substantial aspects of the real world into the multi-hazard agent-based platform. This model provides a unique opportunity for local authorities to prioritize their resources for hazard education, community disaster preparedness, and resilience plans. 
    more » « less
  6. The local government’s continuous support is critical for the well-being of a community during disaster events. E-Government systems that establish and maintain ongoing connections with the community thus play a vital role in supporting crisis response and recovery. Such systems’ ability to adapt to the crisis circumstances and to address emergent needs helps them continue their fundamental functions during disasters. Considering various services might require different amounts and types of resources, prioritization strategies are helpful in determining the processing order of requests. This paper discusses the role of prioritizing services within an e-Government system, to better understand how such a system can be managed to best utilize available resources. The study examines how a well-functioning e-Government system, the Orange County, Florida 311 non-emergency service system, responded to the COVID-19 pandemic and how the changes in service operations requirements can affect service provision, specifically with respect to assigning or re-assigning priority levels. 
    more » « less