skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Evacuation time estimates for life safety in Tsunami hazards
Many coastal communities around the world are threatened by a near-field (or local) tsunami that could inundate the low-lying areas in a matter of minutes after generation. The universal consensus amongst emergency agencies and academic researchers is that a safe evacuation requires an effective response, which is typically assessed by the evacuation time estimate (ETE). ETE is an integral component of community emergency evacuation planning, especially areas prone to tsunamis. This paper aims to investigate the ETE for pedestrian evacuation during a tsunami through two different approaches: (1) the deterministic Least-Cost Distance (LCD) model; and (2) the dynamic Agent-Based Model (ABM). Then, the comparison of the two models in their intrinsic characteristics, strengths and weaknesses, and its applicability was discussed based on methodology behind of the LCD model and ABM. The LCD model was conducted to generate a spatially distributed ETE map, visualizing vulnerable areas where the evacuation time would be insufficient for individuals to reach safety. The ABM investigated uncertainty during tsunami evacuations, such as population distribution, walking speed, and milling time. This paper provides insights into the differences between the LCD model and ABM in terms of methodology and application. It assists the academic researchers and emergency managers, evacuation planners, and decision makers to choose an appropriate method for modeling pedestrian evacuation during tsunami.  more » « less
Award ID(s):
2103713 2052930
PAR ID:
10579338
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Disaster Risk Reduction
Volume:
119
Issue:
C
ISSN:
2212-4209
Page Range / eLocation ID:
105237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety. 
    more » « less
  2. This paper presents the use of tsunami evacuation drills within a coastal community in the Cascadia Subduction Zone (CSZ) to better understand evacuation behaviors and thus to improve tsunami evacuation preparedness and resilience. Evacuees’ spatial trajectory data were collected by Global Navigation Satellite System (GNSS) embedded in mobile devices. Based on the empirical trajectory data, probability functions were employed to model people’s walking speed during the evacuation drills. An Evacuation Hiking Function (EHF) was established to depict the speed–slope relationship and to inform evacuation modeling and planning. The regression analysis showed that evacuees’ speed was significantly negatively associated with slope, time spent during evacuation, rough terrain surface, walking at night, and distance to destination. We also demonstrated the impacts of milling time on mortality rate based on participants’ empirical evacuation behaviors and a state-of-the-art CSZ tsunami inundation model. Post-drill surveys revealed the importance of the drill as an educational and assessment tool. The results of this study can be used for public education, evacuation plan assessment, and evacuation simulation models. The drill procedures, designs, and the use of technology in data collection provide evidence-driven solutions to tsunami preparedness and inspire the use of drills in other types of natural disasters such as wildfires, hurricanes, volcanoes, and flooding. 
    more » « less
  3. Abstract. Previous tsunami evacuation simulations have mostly been based on arbitrary assumptions or inputs adapted from non-emergency situations, but a few studies have used empirical behavior data. This study bridges this gap by integrating empirical decision data from surveys on local evacuation expectations and evacuation drills into an agent-based model of evacuation behavior for two Cascadia subduction zone (CSZ) communities that would be inundated within 20–40 min after a CSZ earthquake. The model also considers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we integrate the slope-speed component from least-cost distance to build the simulation model that better represents the complex nature of evacuations. The simulation results indicate that milling time and the evacuation participation rate have significant nonlinear impacts on tsunami mortality estimates. When people walk faster than 1 m s−1, evacuation by foot is more effective because it avoids traffic congestion when driving. We also find that evacuation results are more sensitive to walking speed, milling time, evacuation participation, and choosing the closest safe location than to other behavioral variables. Minimum tsunami mortality results from maximizing the evacuation participation rate, minimizing milling time, and choosing the closest safe destination outside of the inundation zone. This study's comparison of the agent-based model and the beat-the-wave (BtW) model finds consistency between the two models' results. By integrating the natural system, built environment, and social system, this interdisciplinary model incorporates substantial aspects of the real world into the multi-hazard agent-based platform. This model provides a unique opportunity for local authorities to prioritize their resources for hazard education, community disaster preparedness, and resilience plans. 
    more » « less
  4. Despite the increase in frequency and intensity of wildfires around the world, little research has examined households’ expectations of evacuation logistics and evacuation time estimate (ETE) components during such rapid-onset disasters. To address this gap, this study analyzes data from 152 household responses affected by the devastating 2018 wildfire in Mati, Greece where the second-deadliest wildfire of the 21st century took place. The questionnaire measured residents’ expectations of how they would respond to a future wildfire. This includes the number of vehicles they would take, their evacuation destination and route choices, and their expected evacuation preparation and travel times. Explanatory variables include risk perceptions, wildfire preparedness, wildfire experience, and demographic characteristics. The univariate results reveal some similarities to, but also some differences from, expected evacuation logistics and ETE components in other natural hazards. Moreover, correlation and regression analyses show that expected evacuation logistics and ETE components are primarily related to wildfire preparedness actions. Comparison of this study’s results with other rapid onset events such as tsunamis and hazardous material incidents, as well as longer onset events such as hurricanes, sheds light on household responses to wildfires. Emergency managers can use the similarities in results across studies to better prepare for wildfire evacuations. 
    more » « less
  5. null (Ed.)
    Earthquakes along the Cascadia subduction zone would generate a local tsunami that could arrive at coastlines within minutes. Few studies provide empirical evidence to understand the potential behaviors of local residents during this emergency. To fill this knowledge gap, this study examines residents’ perceptions and intended evacuation behaviors in response to an earthquake and tsunami, utilizing a survey sent to households in Seaside, OR. The results show that the majority of respondents can correctly identify whether their house is inside or outside a tsunami inundation zone. Older respondents are more likely to identify this correctly regardless of any previous disaster evacuation experience or community tenure. The majority of respondents (69%) say they would evacuate in the event of a tsunami. Factors influencing this choice include age, motor ability, access to transportation, and trust in infrastructure resiliency or traffic conditions. While the City of Seaside actively promotes evacuation by foot, 38% of respondents still state they would use a motor vehicle to evacuate. Females and older respondents are more likely to evacuate by foot. Respondents with both higher confidence in their knowledge of disaster evacuation and higher income are more likely to indicate less time needed to evacuate than others. Generally, respondents are more likely to lead rather than follow during an evacuation, especially respondents who report being more prepared for an evacuation and who have a higher perceived risk. This study showcases a unique effort at empirically analyzing human tsunami evacuation lead or follow choice behavior. 
    more » « less