skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1953009

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A fundamental challenge in energy sustainability is efficient utilization of solar energy towards energy‐neutral systems. The current solar cell technologies have been most widely employed to achieve this goal, but are limited to a single‐layer 2D surface. To harvest solar light more efficiently, a multilayer system capable of harvesting solar light in a cuboid through transparent photothermal thin films of iron oxide and a porphyrin compound is developed. Analogous to a multilayer capacitor, an array of transparent, spectral selective, photothermal thin films allows white light to penetrate them, not only collecting photon energy in a 3D space, but generating sufficient heat on each layer with significantly increased total surface area. In this fashion, thermal energy is generated via a multilayer photothermal system that functions as an efficient solar collector, energy converter and generator with high energy density. A solar‐activated thermal energy generator that can produce heat without any power supply and reach a maximum temperature of 76.1 °C is constructed. With a constant incoming white light (0.4 W cm−2), the thermal energy generated can be amplified 12‐fold via multilayers. The multilayer system extends another dimension in solar harvesting and paves a new path to energy generation for the energy‐neutral system. 
    more » « less
  2. The research presented in this study aims to tackle a pivotal challenge in solar energy technologies: how to sustain energy production when direct sunlight is not readily available. By introducing a novel photothermal radiator that effectively harnesses diffused light through plasmonic Fe₃O₄@Cu2-xS nanoparticles, we seek to offer a sustainable solution for maintaining comfortable indoor temperatures without heavy reliance on traditional solar sources. Our approach involves the use of UV and IR lights to photothermally activate transparent Fe₃O₄@Cu2-xS thin films, showcasing a proactive strategy to optimize energy capture even in low-light scenarios such as cloudy days or nighttime hours. This innovative technology carries immense potential for energy-neutral buildings, paving the way to reduce dependence on external energy grids and promoting a more sustainable future for indoor heating and comfort control. The developed photothermal radiator incorporates multiple transparent thin films infused with plasmonic Fe₃O₄@Cu2-xS nanoparticles, known for their robust UV and IR absorptions driven by Localized Surface Plasmon Resonance (LSPR). Through the application of UV and IR lights, these thin films efficiently convert incident photons into thermal energy. Our experiments within a specially constructed Diffused Light Photothermal Box (DLPB), designed to simulate indoor environments, demonstrate the system's capability to raise temperatures above 50°C effectively. This pioneering photothermal radiator offers a promising pathway for sustainable heat generation in indoor spaces, harnessing ubiquitous diffused light sources to enhance energy efficiency. 
    more » « less
  3. A Photothermal Solar Tunnel Radiator (PSTR) is designed and developed by employing multiple transparent photothermal glass panels (TPGP). The primary objective is to pioneer a transformative approach to achieve energy-neutral building heating utilities, exemplified by a lab-scale "Photothermal Solar Box" (PSB) exclusively heated with TPGP under natural sunlight. The PSTR presents a novel paradigm for sustainable energy, enabling direct solar energy capture through transparent glass substrates with photothermal coatings. The high transparency of Fe3O4@Cu2-xS coated glass substrates enhance efficient solar harvesting and photothermal energy generation within the Photothermal Solar Box. The system demonstrates an impressive thermal energy output, reaching up to 9.1x105 joules with 8 photothermal panels in parallel. Even under colder conditions (ambient temperature: -10 °C), with accelerated heat loss, the interior temperatures of the PSB with partial thermal insulation achieve a commendable 35 °C, showcasing effective photothermal heating in cold weather. These findings indicate the system's resilience and efficiency in harnessing solar energy under diverse conditions, including partial cloudy weather. The initiative contributes to broader sustainability goals by providing a scalable and practical alternative to traditional solar heating methods, aligning with the global mission for a cleaner, greener future. 
    more » « less
  4. Among major energy conversion methods, photovoltaic (PV) solar cells have been the most popular and widely employed for a variety of applications. Although a PV solar panel has been shown as one of the most efficient green energy sources, its 2D surface solar light harvesting has reached great limitations as it requires large surface areas. There is, therefore, an increasing need to seek solar harvest in a three-dimensional fashion for enhanced energy density. In addition to a conventional 2D solar panel in the x-y area, we extend another dimension of solar harvesting in the z-axis through multiple CdTe solar panels arranged in parallel. The high transparency allows sunlight to partially penetrate multiple solar panels, resulting in significantly increased solar harvesting surface area in a 3D fashion. The advantages of the 3D multi-panel solar harvesting system include: i) enlarged solar light collecting surface area, therefore increased energy density, ii) the total output power from multiple panels can exceed that of the single panel, and iii) significantly reduced surface area needed for densely populated cities. With five CdTe solar panels of different transparencies in parallel, the multilayer system can produce collective output power 233% higher than that of the single solar panel under the same surface area when arranged in descending (i.e., PV panel with the highest transparency on top and lowest at bottom). The PCE of the multi-panel system has also increased 233% in descending order indicating the viability of 3D solar harvesting. The multi-panel system will dimensionally transform solar harvesting from 2D to 3D for more efficient energy generation. 
    more » « less
  5. The efficiencies of photovoltaic (PV) and thermoelectric (TE) have been limited by the intrinsic properties to ~ 25 % and ~ 10 %, respectively. In current applications, photovoltaics utilizes the shorter wavelength end of the solar spectrum but suffer decreases in efficiency from heating caused by IR absorption. The novel tunable nanostructures of new hybrids eliminate this problem by directing thermal energy from longer wavelengths to the thermoelectric device. Solar light is harvested through transparent hybrid and segregated into different wavelengths: the IR is absorbed by the hybrid which is photothermally heated up to ~100 °C for the required thermoelectric temperature span; the UV/visible is directed to PV with reduced IR components, therefore significantly reducing heating. In this way, both PV and TE operate jointly by separately utilizing the full spectrum of solar light. The novel hybrid functions not only as a photothermal heater for TE but also a wavelength segregator enabling the PV and TE devices to synergistically produce electrical energy with much greater system efficiency. Also identified is the operating structural mechanism on spectral tunability and photothermal effect of the photonic hybrids. 
    more » « less
  6. The temperature dependency of photovoltaic power conversion efficiency (PCE) has been a key challenge to solar applications due to intrinsic processes. Herein, an alternative strategy is developed by modulating the solar light spectrum with a series of photonic hybrids. Transparent thin films are synthesized with the solutions of porphyrin compounds and iron oxides which exhibit strong absorptions in the UV and IR regions. These spectral modulating thin films are photonically tuned via compositional optimization to absorb photons near 400 nm and above 1127 nm from solar spectrum to reduce thermalization and sub‐bandgap absorption. These spectral modulators are applied in a particular configuration above a commercial silicon panel to partially filter the simulated solar light. The PCE of the silicon panel suffers a significant decrease due to temperature increase from 22.9 to 92.9 °C after 60 min solar irradiation, resulting in a PCE decrease from 25.1% to 16.3%. With the transparent spectral modulators, upon solar irradiation for 60 min, the maximum PCE has maintained at 20.5%. The mechanisms of PCE enhancement are identified based on reduced thermalization and sub‐bandgap absorption. 
    more » « less
  7. Photovoltaic solar cells have been extensively used for various applications and are considered one of the most efficient green energy sources. However, their 2D surface area solar harvesting has limitations, and there is an increasing need to explore the possibility of multiple layer solar harvest for enhanced energy density. To address this, we have developed spectral-selective transparent thin films based on porphyrin and iron oxide compounds that allow solar light to penetrate multiple layers, significantly increasing solar harvesting surface area and energy density. These thin films are designed as photovoltaic (PV) and photothermal (PT) panels that can convert photons into either electricity or thermal energy for various green energy applications, such as smart building skins and solar desalination. The advantages of this 3D solar harvesting system include enlarged solar light collecting surface area and increased energy density. The multilayer system transforms the current 2D to 3D solar harvesting, enabling efficient energy generation. This review discusses recent developments in the synthesis and characterization of PV and PT transparent thin films for solar harvesting and energy generation using multilayers. Major applications of the 3D solar harvesting system are reviewed, including thermal energy generation, multilayered DSSC PV system, and solar desalination. Some preliminary data on transparent multilayer DSSC PVs are presented. 
    more » « less
  8. The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz–7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz–10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole–dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications. 
    more » « less