Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Invasion by non‐native annual grasses poses a serious threat to native vegetation in California, facilitated through interaction with wildfires. Our work is the first attempt to use the coupled fire‐atmosphere model, WRF‐Fire, to investigate how shifts from native, shrub‐dominated vegetation to invasive grasses could have affected a known wildfire event in southern California. We simulate the Mountain Fire, which burned >11,000 ha in July 2013, under idealized fuel conditions representing varying extents of grass invasion. Expanding grass to double its observed coverage causes fire to spread faster due to the lower fuel load in grasses and increased wind speed. Beyond this, further grass expansion reduces the simulated spread rate because lower heat release partially offsets the positive effects. Our simulations suggest that grass expansion may generally promote larger faster‐spreading wildfires in southern California, motivating continued efforts to contain and reduce the spread of invasive annual grasses in this region.more » « less
- 
            Abstract Coupled fire‐atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire‐atmosphere model, WRF‐Fire, to examine the sensitivities of some of these phenomena to the modeled total fuel load and its consumption. Specifically, the 2020 Bear Fire and 2021 Caldor Fire in California's Sierra Nevada are simulated using three fuel loading scenarios (1X, 4X, and 8X LANDFIRE derived surface fuel), while controlling the fire rate of spread using observations. This approach helps isolate the fuel loading and consumption needed to produce fire‐generated winds and plume rise comparable to radar observations of these events. Increasing fuel loads and corresponding fire residence time in WRF‐Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40–45 m s−1, and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE‐based surface fuel loads in WRF‐Fire likely under‐represent fuel loading, having significant implications for simulating landscape‐scale wildfire processes, associated impacts on spread, and fire‐atmosphere feedbacks.more » « less
- 
            Abstract Smoke from wildfires or burning biomass directly affects air quality and weather through modulating cloud microphysics and radiation. A simple wildfire emission coupling of black carbon (BC) and organic carbon (OC) with microphysics was implemented using the Weather Research and Forecasting model's fire module. A set of large‐eddy simulations inspired by unique surface and upper atmospheric observations from the 2021 Santa Coloma de Queralt Fire (Spain) were conducted to investigate the influence of background conditions and interactions between atmospheric and fire processes such as fire smoke, ambient moisture, and latent heat release on the formation and evolution of pyroconvective clouds. While the microphysical impact of BC and OC emissions on the dynamics of fire behavior is minimal on short time scales (<6 hr), their presence increased the cloud water content and decreased the rain rates in our case study. In our case study, atmospheric moisture played an important role in the formation and development of pyroconvective clouds, which in turn enhanced the surface winds (8%) and fire spread rate (25%). The influence of fuel moisture on the pyroconvective cloud formation is smaller when compared with the atmospheric moisture content. A better representation of cloud processes can improve the mesoscale forecasts, which is important for better fire behavior modeling.more » « less
- 
            Abstract There is a need for nowcasting tools to provide timely and accurate updates on the location and rate of spread (ROS) of large wildfires, especially those impacting communities in the wildland urban interface. In this study, we demonstrate how fixed‐site weather radars can be used to fill this gap. Specifically, we develop and test a radar‐based fire‐perimeter tracking tool that leverages the tendency for local maxima in the radar reflectivity to be collocated with active fire perimeters. Reflectivity maxima are located using search radials from points inside a fire polygon, and perimeters are updated at intervals of ∼10 min. The algorithm is tested using publicly available Next Generation Weather Radar radar data for two large and destructive wildfires, the Camp and Bear Fires, both occurring in northern California, USA. The radar‐based fire perimeters are compared with available, albeit limited, satellite and airborne infrared observations, showing good agreement with conventional fire‐tracking tools. The radar data also provide insights into fire ROS, revealing the importance of long‐range spotting in generating ROS that exceeds conventional estimates. One limitation of this study is that high‐resolution fire perimeter validation data are sparsely available, precluding detailed error quantification for the radar estimates drawn from samples spanning a range of environmental conditions and radar configurations. Nevertheless, the radar tracking approach provides the basis for improved situational awareness during high‐impact fires.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Background Existing fire spread models focus exclusively on wildland or urban fire simulation. Aims This study aims at an offline coupling of two fire spread models to enable a continuous simulation of a wildfire incident transitioning from wildland into wildland–urban interface (WUI) communities, evaluate the effects of wind input on simulation results and study the influence of building types on fire spread patterns. Methods The selected models are WRF-Fire, a wildland fire behaviour simulation platform, and SWUIFT, a model for fire spread inside the WUI. The 2021 Marshall Fire serves as the case study. A map of the fire’s timeline and location is generated using public information. Three simulation scenarios are analysed to study the effects of wind input resolution and building type on the predicted fire spread and damage. Key results The most accurate results are obtained using a high-resolution wind input and when incorporating different building types. Conclusions The offline coupling of models provides a reliable solution for fire spread simulation. Fire-resistant buildings likely helped limit community fire spread during the Marshall Fire. Implications The research is a first step toward developing simulation capabilities to predict the spread of wildfires within the wildland, WUI and urban environments.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract. Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The results are in good agreement with observations recorded during the event. Extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making and emergency response management during wildfire events.more » « less
- 
            The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere SimulationIn this study, we focus on the effects of fuel bed representation and fire heat and smoke distribution in a coupled fire-atmosphere simulation platform for two landscape-scale fires: the 2018 Camp Fire and the 2021 Caldor Fire. The fuel bed representation in the coupled fire-atmosphere simulation platform WRF-Fire currently includes only surface fuels. Thus, we enhance the model by adding canopy fuel characteristics and heat release, for which a method to calculate the heat generated from canopy fuel consumption is developed and implemented in WRF-Fire. Furthermore, the current WRF-Fire heat and smoke distribution in the atmosphere is replaced with a heat-conserving Truncated Gaussian (TG) function and its effects are evaluated. The simulated fire perimeters of case studies are validated against semi-continuous, high-resolution fire perimeters derived from NEXRAD radar observations. Furthermore, simulated plumes of the two fire cases are compared to NEXRAD radar reflectivity observations, followed by buoyancy analysis using simulated temperature and vertical velocity fields. The results show that while the improved fuel bed and the TG heat release scheme have small effects on the simulated fire perimeters of the wind-driven Camp Fire, they affect the propagation direction of the plume-driven Caldor Fire, leading to better-matching fire perimeters with the observations. However, the improved fuel bed representation, together with the TG heat smoke release scheme, leads to a more realistic plume structure in comparison to the observations in both fires. The buoyancy analysis also depicts more realistic fire-induced temperature anomalies and atmospheric circulation when the fuel bed is improved.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
