skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation
In this study, we focus on the effects of fuel bed representation and fire heat and smoke distribution in a coupled fire-atmosphere simulation platform for two landscape-scale fires: the 2018 Camp Fire and the 2021 Caldor Fire. The fuel bed representation in the coupled fire-atmosphere simulation platform WRF-Fire currently includes only surface fuels. Thus, we enhance the model by adding canopy fuel characteristics and heat release, for which a method to calculate the heat generated from canopy fuel consumption is developed and implemented in WRF-Fire. Furthermore, the current WRF-Fire heat and smoke distribution in the atmosphere is replaced with a heat-conserving Truncated Gaussian (TG) function and its effects are evaluated. The simulated fire perimeters of case studies are validated against semi-continuous, high-resolution fire perimeters derived from NEXRAD radar observations. Furthermore, simulated plumes of the two fire cases are compared to NEXRAD radar reflectivity observations, followed by buoyancy analysis using simulated temperature and vertical velocity fields. The results show that while the improved fuel bed and the TG heat release scheme have small effects on the simulated fire perimeters of the wind-driven Camp Fire, they affect the propagation direction of the plume-driven Caldor Fire, leading to better-matching fire perimeters with the observations. However, the improved fuel bed representation, together with the TG heat smoke release scheme, leads to a more realistic plume structure in comparison to the observations in both fires. The buoyancy analysis also depicts more realistic fire-induced temperature anomalies and atmospheric circulation when the fuel bed is improved.  more » « less
Award ID(s):
1953333
PAR ID:
10461800
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Fire
Volume:
6
Issue:
7
ISSN:
2571-6255
Page Range / eLocation ID:
264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Forecasting fire growth, plume rise and smoke impacts on air quality remains a challenging task. Wildland fires dynamically interact with the atmosphere, which can impact fire behavior, plume rises, and smoke dispersion. For understory fires, the fire propagation is driven by winds attenuated by the forest canopy. However, most numerical weather prediction models providing meteorological forcing for fire models are unable to resolve canopy winds. In this study, an improved canopy model parameterization was implemented within a coupled fire-atmosphere model (WRF-SFIRE) to simulate a prescribed burn within a forested plot. Simulations with and without a canopy wind model were generated to determine the sensitivity of fire growth, plume rise, and smoke dispersion to canopy effects on near-surface wind flow. Results presented here found strong linkages between the simulated fire rate of spread, heat release and smoke plume evolution. The standard WRF-SFIRE configuration, which uses a logarithmic interpolation to estimate sub-canopy winds, overestimated wind speeds (by a factor 2), fire growth rates and plume rise heights. WRF-SFIRE simulations that implemented a canopy model based on a non-dimensional wind profile, saw significant improvements in sub-canopy winds, fire growth rates and smoke dispersion when evaluated with observations. 
    more » « less
  2. Background Accurate simulation of wildfires can benefit pre-ignition mitigation and preparedness, and post-ignition emergency response management. Aims We evaluated the performance of Weather Research and Forecast-Fire (WRF-Fire), a coupled fire-atmosphere wildland fire simulation platform, in simulating a large historic fire (2018 Camp Fire). Methods A baseline model based on a setup typically used for WRF-Fire operational applications is utilised to simulate Camp Fire. Simulation results are compared to high-temporal-resolution fire perimeters derived from NEXRAD observations. The sensitivity of the model to a series of modelling parameters and assumptions governing the simulated wind field are then investigated. Results of WRF-Fire for Camp Fire are compared to FARSITE. Key results Baseline case shows non-negligible discrepancies between the simulated fire and the observations on rate of spread (ROS) and spread direction. Sensitivity analysis results show that refining the atmospheric grid of Camp Fire’s complex terrain improves fire prediction capabilities. Conclusions Sensitivity studies show the importance of refined atmosphere modelling for wildland fire simulation using WRF-Fire in complex terrains. Compared to FARSITE, WRF-Fire agrees better with the observations in terms of fire propagation rate and direction. Implications The findings suggest the need for further investigation of other possible sources of wildfire modelling uncertainties and errors. 
    more » « less
  3. Abstract Coupled fire‐atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire‐atmosphere model, WRF‐Fire, to examine the sensitivities of some of these phenomena to the modeled total fuel load and its consumption. Specifically, the 2020 Bear Fire and 2021 Caldor Fire in California's Sierra Nevada are simulated using three fuel loading scenarios (1X, 4X, and 8X LANDFIRE derived surface fuel), while controlling the fire rate of spread using observations. This approach helps isolate the fuel loading and consumption needed to produce fire‐generated winds and plume rise comparable to radar observations of these events. Increasing fuel loads and corresponding fire residence time in WRF‐Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40–45 m s−1, and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE‐based surface fuel loads in WRF‐Fire likely under‐represent fuel loading, having significant implications for simulating landscape‐scale wildfire processes, associated impacts on spread, and fire‐atmosphere feedbacks. 
    more » « less
  4. Abstract Injections of wildfire smoke plumes into the free troposphere impact air quality, yet model forecasts of injections are poor. Here, we use aircraft observations obtained during the 2019 western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise parameterization in two atmospheric chemistry-transport models (WRF-Chem and HRRR-Smoke). Observations show that smoke injections into the free troposphere occur in 35% of plumes, whereas the models forecast 59–95% indicating false injections in the simulations. False injections were associated with both models overestimating fire heat flux and terrain height, and with WRF-Chem underestimating planetary boundary layer height. We estimate that the radiant fraction of heat flux is 0.5 to 25 times larger in models than in observations, depending on fuel type. Model performance was substantially improved by using observed heat flux and boundary layer heights, confirming that models need accurate heat fluxes and boundary layer heights to correctly forecast plume injections. 
    more » « less
  5. The objective of this study was to assess feasibility of integrating a coupled fire-atmosphere model within an air-quality forecast system to create a multiscale air-quality modeling framework designed to simulate wildfire smoke. For this study, a coupled fire-atmosphere model, WRF-SFIRE, was integrated, one-way, with the AIRPACT air-quality modeling system. WRF-SFIRE resolved local meteorology, fire growth, the fire plume rise, and smoke dispersion, and provided AIRPACT with fire inputs. The WRF-SFIRE-forecasted fire area and the explicitly resolved vertical smoke distribution replaced the parameterized BlueSky fire inputs used by AIRPACT. The WRF-SFIRE/AIRPACT integrated framework was successfully tested for two separate wildfire events (2015 Cougar Creek and 2016 Pioneer fires). The execution time for the WRF-SFIRE simulations was <3 h for a 48 h-long forecast, suggesting that integrating coupled fire-atmosphere simulations within the daily AIRPACT cycle is feasible. While the WRF-SFIRE forecasts realistically captured fire growth 2 days in advance, the largest improvements in the air quality simulations were associated with the wildfire plume rise. WRF-SFIRE-estimated plume tops were within 300-m of satellite-estimated plume top heights for both case studies analyzed in this study. Air quality simulations produced by AIRPACT with and without WRF-SFIRE inputs were evaluated with nearby PM 2 . 5 measurement sites to assess the performance of our multiscale smoke modeling framework. The largest improvements when coupling WRF-SFIRE with AIRPACT were observed for the Cougar Creek Fire where model errors were reduced by ∼50%. For the second case (Pioneer fire), the most notable change with WRF-SFIRE coupling was that the probability of detection increased from 16 to 52%. 
    more » « less