skip to main content

Search for: All records

Award ID contains: 1953781

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2023
  2. Abstract Let $W$ be an irreducible complex reflection group acting on its reflection representation $V$. We consider the doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ as well as its quotient $DR_W:= \wedge (V \oplus V^*)/ \langle \wedge (V \oplus V^*)^{W}_+ \rangle $ by the ideal generated by its homogeneous $W$-invariants with vanishing constant term. We describe the bigraded isomorphism type of $DR_W$; when $W = {{\mathfrak{S}}}_n$ is the symmetric group, the answer is a difference of Kronecker products of hook-shaped ${{\mathfrak{S}}}_n$-modules. We relate the Hilbert series of $DR_W$ to the (type A) Catalan and Narayana numbers and describe a standard monomial basis of $DR_W$ using a variant of Motzkin paths. Our methods are type-uniform and involve a Lefschetz-like theory, which applies to the exterior algebra $\wedge (V \oplus V^*)$.