skip to main content


Title: Set Partitions, Fermions, and Skein Relations
Abstract

Let $\Theta _n = (\theta _1, \dots , \theta _n)$ and $\Xi _n = (\xi _1, \dots , \xi _n)$ be two lists of $n$ variables, and consider the diagonal action of ${{\mathfrak {S}}}_n$ on the exterior algebra $\wedge \{ \Theta _n, \Xi _n \}$ generated by these variables. Jongwon Kim and the 2nd author defined and studied the fermionic diagonal coinvariant ring$FDR_n$ obtained from $\wedge \{ \Theta _n, \Xi _n \}$ by modding out by the ideal generated by the ${{\mathfrak {S}}}_n$-invariants with vanishing constant term. On the other hand, the 2nd author described an action of ${{\mathfrak {S}}}_n$ on the vector space with basis given by noncrossing set partitions of $\{1,\dots ,n\}$ using a novel family of skein relations that resolve crossings in set partitions. We give an isomorphism between a natural Catalan-dimensional submodule of $FDR_n$ and the skein representation. To do this, we show that set partition skein relations arise naturally in the context of exterior algebras. Our approach yields an ${{\mathfrak {S}}}_n$-equivariant way to resolve crossings in set partitions. We use fermions to clarify, sharpen, and extend the theory of set partition crossing resolution.

 
more » « less
Award ID(s):
1953781
NSF-PAR ID:
10367053
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
11
ISSN:
1073-7928
Page Range / eLocation ID:
p. 9427-9480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$ , the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$ , which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions . These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred. 
    more » « less
  2. Abstract

    Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.

     
    more » « less
  3. null (Ed.)
    Abstract Let $W$ be an irreducible complex reflection group acting on its reflection representation $V$. We consider the doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ as well as its quotient $DR_W:= \wedge (V \oplus V^*)/ \langle \wedge (V \oplus V^*)^{W}_+ \rangle $ by the ideal generated by its homogeneous $W$-invariants with vanishing constant term. We describe the bigraded isomorphism type of $DR_W$; when $W = {{\mathfrak{S}}}_n$ is the symmetric group, the answer is a difference of Kronecker products of hook-shaped ${{\mathfrak{S}}}_n$-modules. We relate the Hilbert series of $DR_W$ to the (type A) Catalan and Narayana numbers and describe a standard monomial basis of $DR_W$ using a variant of Motzkin paths. Our methods are type-uniform and involve a Lefschetz-like theory, which applies to the exterior algebra $\wedge (V \oplus V^*)$. 
    more » « less
  4. null (Ed.)
    Abstract Let $$\Delta $$ Δ be a hyperbolic triangle with a fixed area $$\varphi $$ φ . We prove that for all but countably many $$\varphi $$ φ , generic choices of $$\Delta $$ Δ have the property that the group generated by the $$\pi $$ π -rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all $$\varphi \in (0,\pi ){\setminus }\mathbb {Q}\pi $$ φ ∈ ( 0 , π ) \ Q π , a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space $$\mathfrak {C}_\theta $$ C θ of singular hyperbolic metrics on a torus with a single cone point of angle $$\theta =2(\pi -\varphi )$$ θ = 2 ( π - φ ) , and answer an analogous question for the holonomy map $$\rho _\xi $$ ρ ξ of such a hyperbolic structure $$\xi $$ ξ . In an appendix by Gao, concrete examples of $$\theta $$ θ and $$\xi \in \mathfrak {C}_\theta $$ ξ ∈ C θ are given where the image of each $$\rho _\xi $$ ρ ξ is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds. 
    more » « less
  5. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less