Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fossils are rare in Cambrian strata of the Uinta Mountains of northeastern Utah, and are important because they can help integrate our understanding of laterally adjacent but discontiguous rock units, e. g., the Tintic Quartzite of Utah and the Lodore Formation of Utah-Colorado. New body fossils from strata previously mapped as Tintic or Cambrian Undifferentiated, but here interpreted as the Ophir Formation, include indeterminate hyoliths and hyolithids, brachiopods including a linguloid, and the trilobitesTrachycheilusResser, 1945 andElrathiellaPoulsen, 1927. The last two assign these strata to theEhmaniellaBiozone (uppermost Wuliuan Stage; Miaolingian Series) or traditional Laurentian middle Cambrian. These data, together with fossil occurrences elsewhere in Utah, require that the Tintic Quartzite was deposited prior to and/or during the early Wuliuan, and suggest that the unit could be correlative to much of the Lodore Formation of Utah and Colorado.more » « less
-
We present a refined global Furongian (late Cambrian) time scale derived through the application of Bayesian age modeling, using an integrative assemblage of conditioning likelihoods (age constraints) including U-Pb zircon maximum depositional ages in the Steptoean positive isotopic carbon excursion (SPICE) reference section in Smithfield Canyon (Utah, USA) and nearby McPherson Canyon (Idaho, USA); Re-Os geochronology from the SPICE-bearing interval of the Andrarum-3 core (Scania, Sweden); and new high-precision chemical abrasion−isotope dilution−thermal ionization mass spectrometry U-Pb zircon tuff ages from Avalonian Wales. We embed these radioisotopic ages within a novel probabilistic treatment of biozones to establish temporal constraints on rock accumulation rates in the Great Basin (USA), the duration of the SPICE event, and Laurentian trilobite biozones correlated to the global Cambrian time scale. Results reveal a beginning of 494.5 (+0.7/−0.6) Ma and an end of 487.3 ± 0.08 Ma for the Furongian Epoch, representing a reduction of the traditional late Cambrian by ∼30% and an extension of the Ordovician by nearly half a million years. Furthermore, the SPICE is confined to a duration of 2.6 (+0.9/−0.8) m.y. Our new approach to integrating faunal succession into Bayesian age modeling can help to constrain rock accumulation rates and possible hiatuses in sections with limited radioisotopic ages. Additionally, it offers a robust calibration tool for further refining the numerical calibration of the geologic time scale, for testing hypotheses about the rates of trilobite evolution and extinction, for evaluating causes of the SPICE, and for constraining paleoclimatic conditions including atmospheric O2 levels.more » « lessFree, publicly-accessible full text available February 24, 2026
-
The Cambrian Tonto Group of the Grand Canyon was used by Edwin McKee in 1945 to make an insightful visual representation of how sedimentary facies record transgression across a craton—a common conceptual framework still used in geologic education. Although the tenets of McKee’s facies diagram persist, the integration of new stratigraphy, depositional models, paleontology, biostratigraphy, and other data is refining the underlying dynamics of this cratonic transgression. Instead of McKee’s interpretation of one major transgression with only minor regressions, there are at least five stratigraphic sequences, of which the lower three are separated by disconformities. These hiatal surfaces likely represent erosion of previously deposited Cambrian sediments that were laid down on the tropical, pre-vegetated landscape. Rather than being fully marine in origin, these sequences were formed by a mosaic of depositional environments including braided coastal plain, eolian, marginal marine, and various shallow marine environments. McKee, not having the insights of sequence stratigraphy and plate tectonics, concluded that the preservation of these sediments were due to predepositional topography and subsidence of the “geosyncline.” Our modern interpretation is that accommodation space was a result of eustasy and differential subsidence on the continental margin. Our modified depositional model provides a more effective teaching tool for fundamentals and nuances of modern stratigraphic thinking, using the Tonto Group as a still-influential type location for understanding transgressive successions.more » « less
-
We describe, interpret, and establish a stratotype for the Frenchman Mountain Dolostone (FMD), a new Cambrian stratigraphic unit that records key global geochemical and climate signals and is well exposed throughout the Grand Canyon and central Basin and Range, USA. This flat-topped carbonate platform deposit is the uppermost unit of the Tonto Group, replacing the informally named “undifferentiated dolomites.” The unit records two global chemostratigraphic events—the Drumian Carbon Isotope Excursion (DICE), when δ13Ccarb (refers to “marine carbonate rocks”) values in the FMD dropped to −2.7‰, and the Steptoean Positive Carbon Isotope Excursion (SPICE), when the values rose to +3.5‰. The formation consists of eight lithofacies deposited in shallow subtidal to peritidal paleoenvironments. At its stratotype at Frenchman Mountain, Nevada, the FMD is 371 m thick. Integration of regional trilobite biostratigraphy and geochronology with new stratigraphy and sedimentology of the FMD, together with new δ13Ccarb chemostratigraphy for the entire Cambrian succession at Frenchman Mountain, illustrates that the FMD spans ~7.2 m.y., from Miaolingian (lower Drumian, Bolaspidella Zone) to Furongian (Paibian, Dicanthopyge Zone) time. To the west, the unit correlates with most of the Banded Mountain Member of the ~1100-m-thick Bonanza King Formation. To the east, at Grand Canyon’s Palisades of the Desert, the FMD thins to 8 m due to pre–Middle Devonian erosion that cut progressively deeper cratonward. Portions of the FMD display visually striking, meter-scale couplets of alternating dark- and light-colored peritidal facies, while other portions consist of thick intervals of a single peritidal or shallow subtidal facies. Statistical analysis of the succession of strata in the stratotype section, involving Markov order and runs order analyses, yields no evidence of cyclicity or other forms of order. Autocyclic processes provide the simplest mechanism to have generated the succession of facies observed in the FMD.more » « less
-
We report new occurrences of scalidophorans, enteropneusts, and other soft-bodied taxa in several middle Cambrian (Miaolingian) formations of the western United States. Among these are the first occurrence of the tubicolous priapulid worm Selkirkia Walcott, 1911 from the Ophir Formation of Utah and possibly from the Bright Angel Formation of Arizona (both Glossopleura Assemblage Biozone, Wuliuan). We document additional Selkirkia willoughbyi Conway Morris & Robison, 1986, S. columbia Conway Morris, 1977, and possible S. spencei Resser, 1939, from the Drum Mountains Wheeler fauna (Wheeler Formation of Utah; Bolaspidella Zone, Drumian). Selkirkia spencei occurs in the Spence Shale Member of the Langston Formation of Idaho (Wuliuan), from which we also describe more specimens. The enteropneust tube Margaretia Walcott, 1931 is quite common at some levels of the Wheeler Formation in the Drum Mountains of Utah, and new Margaretia specimens are also illustrated from the Wheeler Formation in the House Range and the Spence Shale in the Wellsville Mountains. The Wheeler Formation in the Drum Mountains also contains a Spartobranchus-like enteropneust, other possible enteropneusts, and additional undetermined wormlike organisms gen. et sp. indet. Several other taxonomically enigmatic organisms, burrows, or coprolites also occur in the Wheeler faunas of the Drum Mountains and House Range. These occurrences hint at greater diversity of scalidophorans and enteropneusts in the Wheeler ecosystems than has been previously documented, and extend the geographic distribution of the scalidophorans to the Ophir and possibly the Bright Angel formations in western Laurentia. • Key words: Lagerstätten, Selkirkia, Margaretia, Scalidophora, Miaolingian, Ophir, Wheeler, Spence, Bright Angel.more » « less
An official website of the United States government
